摘要:
In some embodiments, systems and methods for identifying a low perfusion condition are provided by transforming a signal using a wavelet transform to generate a scalogram. A pulse band and adjacent marker regions in the scalogram are identified. Characteristics of the marker regions are used to detect the existence of a lower perfusion condition. If such a condition is detected, an event may be triggered, such as an alert or notification.
摘要:
The present disclosure relates to signal processing systems and methods, and more particularly, to systems and methods for analyzing multiparameter spaces to determine changes in a physiological state. In embodiments, a first signal and a second signal may be obtained, from which a first plurality of values of a physiological parameter may be determined. At least one of the signals also may be used to generate a scalogram derived at least in part from the signal. A second plurality of values may be determined based at least in part on a feature in the scalogram. The first and second plurality of values may then be associated, and a physiological state may be analyzed using the associated first and second values. In an embodiment, the signals may be PPG signals and the associated first and second values may include a parameter scatter plot that may permit a user to determine changes in a patient's ventilation state over time.
摘要:
The present disclosure relates to signal processing systems and methods, and more particularly, to systems and methods for analyzing multiparameter spaces to determine changes in a physiological state. In embodiments, a first signal and a second signal may be obtained, from which a first plurality of values of a physiological parameter may be determined. At least one of the signals also may be used to generate a scalogram derived at least in part from the signal. A second plurality of values may be determined based at least in part on a feature in the scalogram. The first and second plurality of values may then be associated, and a physiological state may be analyzed using the associated first and second values. In an embodiment, the signals may be PPG signals and the associated first and second values may include a parameter scatter plot that may permit a user to determine changes in a patient's ventilation state over time.
摘要:
A method and system are provided for evaluating in patient monitoring whether a signal is sensed optimally by receiving a signal, transforming the signal using a wavelet transform, generating a scalogram based at least in part on the transformed signal, identifying a pulse band in the scalogram, identifying a characteristic of the pulse band, determining, based on the characteristic of the pulse band, whether the signal is sensed optimally; and triggering an event. The characteristics of the pulse band and scalogram may be used to provide an indication of monitoring conditions.
摘要:
In some embodiments, systems and methods for identifying a low perfusion condition are provided by transforming a signal using a wavelet transform to generate a scalogram. A pulse band and adjacent marker regions in the scalogram are identified. Characteristics of the marker regions are used to detect the existence of a lower perfusion condition. If such a condition is detected, an event may be triggered, such as an alert or notification.
摘要:
A method and system are provided for evaluating in patient monitoring whether a signal is sensed optimally by receiving a signal, transforming the signal using a wavelet transform, generating a scalogram based at least in part on the transformed signal, identifying a pulse band in the scalogram, identifying a characteristic of the pulse band, determining, based on the characteristic of the pulse band, whether the signal is sensed optimally; and triggering an event. The characteristics of the pulse band and scalogram may be used to provide an indication of monitoring conditions.
摘要:
Systems and methods for determining physiological parameters of a subject using a sensor array. In an embodiment, a sensor array may contain sensor elements for determining multiple physiological parameters. A combination of sensor elements and the physiological parameters determined may be selected based on signals obtained from the sensor elements of the sensor array. A sensor array may be connected to a monitoring device that may select an optimal sensor element or combination of sensor elements and one or more physiological parameters to be determined. The monitoring device may then determine physiological parameters using the selected combination of sensor elements and display information associated with the parameters on a monitor for use, for example, in monitoring a medical patient.
摘要:
A combined physiological sensor and methods for detecting one or more physiological characteristics of a subject are provided. The combined sensor (e.g., a forehead sensor) may be used to detect and/or calculate at least one of a pulse blood oxygen saturation level, a regional blood oxygen saturation level, a respiration rate, blood pressure, an electrical physiological signal (EPS), a pulse transit time (PTT), body temperature associated with the subject, a depth of consciousness (DOC) measurement, any other suitable physiological parameter, and any suitable combination thereof. The combined sensor may include a variety of individual sensors, such as electrodes, optical detectors, optical emitters, temperature sensors, and/or other suitable sensors. The sensors may be advantageously positioned in accordance with a number of different geometries. The combined sensor may also be coupled to a monitoring device, which may receive and/or process one or more output signals from the individual sensors to display information about the medical condition of the subject. In addition, several techniques may be employed to prevent or limit interference between the individual sensors and their associated input and/or output signals.
摘要:
Methods and systems are provided that allow for the simultaneous calculation of pulse and regional blood oxygen saturation. An oximeter system that includes a sensor with a plurality of emitters and detectors may be used to calculate a pulse and/or regional blood oxygen saturation. A plurality of light signals may be emitted from light emitters. A first light signal may be received at a first light detector and a second light signal may be received at a second light detector. A pulse and/or regional blood oxygen saturation value may be calculated based on the received first and/or second light signals. The pulse and regional blood oxygen saturation values may be calculated substantially simultaneously. The calculated pulse and regional blood oxygen saturation values as well as other blood oxygen saturation values may be displayed simultaneously in a preconfigured portion of a display.
摘要:
During patient monitoring, a depth of consciousness (DOC) measure, such as a bispectral index, may be used in conjunction with additional information obtained from an awareness metric derived from one or more physiological signals, such as a photoplethysmograph signal. In an embodiment, a DOC measure may be combined with information from an awareness metric to produce a combined DOC measure. In an embodiment, information from an awareness metric derived from one or more physiological signals may be used to provide an indication of confidence in a DOC measure. In an embodiment, a DOC measure may be used to provide an indication of confidence in a depth of consciousness assessment based on an awareness metric. In an embodiment, one or the other of a DOC measure and an awareness metric may be used to provide an indication of a patient's depth of consciousness (e.g., by one “overriding” the other).