摘要:
A combined physiological sensor and methods for detecting one or more physiological characteristics of a subject are provided. The combined sensor (e.g., a forehead sensor) may be used to detect and/or calculate at least one of a pulse blood oxygen saturation level, a regional blood oxygen saturation level, a respiration rate, blood pressure, an electrical physiological signal (EPS), a pulse transit time (PTT), body temperature associated with the subject, a depth of consciousness (DOC) measurement, any other suitable physiological parameter, and any suitable combination thereof. The combined sensor may include a variety of individual sensors, such as electrodes, optical detectors, optical emitters, temperature sensors, and/or other suitable sensors. The sensors may be advantageously positioned in accordance with a number of different geometries. The combined sensor may also be coupled to a monitoring device, which may receive and/or process one or more output signals from the individual sensors to display information about the medical condition of the subject. In addition, several techniques may be employed to prevent or limit interference between the individual sensors and their associated input and/or output signals.
摘要:
Methods and systems are provided that allow for the simultaneous calculation of pulse and regional blood oxygen saturation. An oximeter system that includes a sensor with a plurality of emitters and detectors may be used to calculate a pulse and/or regional blood oxygen saturation. A plurality of light signals may be emitted from light emitters. A first light signal may be received at a first light detector and a second light signal may be received at a second light detector. A pulse and/or regional blood oxygen saturation value may be calculated based on the received first and/or second light signals. The pulse and regional blood oxygen saturation values may be calculated substantially simultaneously. The calculated pulse and regional blood oxygen saturation values as well as other blood oxygen saturation values may be displayed simultaneously in a preconfigured portion of a display.
摘要:
Systems and methods for determining physiological parameters of a subject using a sensor array. In an embodiment, a sensor array may contain sensor elements for determining multiple physiological parameters. A combination of sensor elements and the physiological parameters determined may be selected based on signals obtained from the sensor elements of the sensor array. A sensor array may be connected to a monitoring device that may select an optimal sensor element or combination of sensor elements and one or more physiological parameters to be determined. The monitoring device may then determine physiological parameters using the selected combination of sensor elements and display information associated with the parameters on a monitor for use, for example, in monitoring a medical patient.
摘要:
During patient monitoring, a depth of consciousness (DOC) measure, such as a bispectral index, may be used in conjunction with additional information obtained from an awareness metric derived from one or more physiological signals, such as a photoplethysmograph signal. In an embodiment, a DOC measure may be combined with information from an awareness metric to produce a combined DOC measure. In an embodiment, information from an awareness metric derived from one or more physiological signals may be used to provide an indication of confidence in a DOC measure. In an embodiment, a DOC measure may be used to provide an indication of confidence in a depth of consciousness assessment based on an awareness metric. In an embodiment, one or the other of a DOC measure and an awareness metric may be used to provide an indication of a patient's depth of consciousness (e.g., by one “overriding” the other).
摘要:
Systems and methods for determining physiological parameters of a subject using a sensor array. In an embodiment, a sensor array may contain sensor elements for determining multiple physiological parameters. A combination of sensor elements and the physiological parameters determined may be selected based on signals obtained from the sensor elements of the sensor array. A sensor array may be connected to a monitoring device that may select an optimal sensor element or combination of sensor elements and one or more physiological parameters to be determined. The monitoring device may then determine physiological parameters using the selected combination of sensor elements and display information associated with the parameters on a monitor for use, for example, in monitoring a medical patient.
摘要:
A combined physiological sensor and methods for detecting one or more physiological characteristics of a subject are provided. The combined sensor (e.g., a forehead sensor) may be used to detect and/or calculate at least one of a pulse blood oxygen saturation level, a regional blood oxygen saturation level, a respiration rate, blood pressure, an electrical physiological signal (EPS), a pulse transit time (PTT), body temperature associated with the subject, a depth of consciousness (DOC) measurement, any other suitable physiological parameter, and any suitable combination thereof. The combined sensor may include a variety of individual sensors, such as electrodes, optical detectors, optical emitters, temperature sensors, and/or other suitable sensors. The sensors may be advantageously positioned in accordance with a number of different geometries. The combined sensor may also be coupled to a monitoring device, which may receive and/or process one or more output signals from the individual sensors to display information about the medical condition of the subject. In addition, several techniques may be employed to prevent or limit interference between the individual sensors and their associated input and/or output signals.
摘要:
Systems and methods are provided for monitoring the physiological state of a subject. One or more physiological parameters of a subject may be determined from a photoplethysmograph (PPG) signal or signals obtained using at least one PPG sensor. In some embodiments, an electrical physiological signal (EPS) sensor may be located in or near a PPG sensor. A sensor configuration including both PPG sensors and EPS sensors may be advantageously used to detect a PPG signal or signals in combination with one or more EPS signal or signals. To reduce potential interference between an EPS sensor and a PPG sensor, fiber-optic input and output lines may be used to transmit optical signals from light generating circuitry and light detecting circuitry. In some embodiments, the generating and detecting circuitry may be located remotely from one another and may further be located remotely from the EPS sensor, PPG sensor, or both.
摘要:
During patient monitoring, a depth of consciousness (DOC) measure, such as a bispectral index, may be used in conjunction with additional information obtained from an awareness metric derived from one or more physiological signals, such as a photoplethysmograph signal. In an embodiment, a DOC measure may be combined with information from an awareness metric to produce a combined DOC measure. In an embodiment, information from an awareness metric derived from one or more physiological signals may be used to provide an indication of confidence in a DOC measure. In an embodiment, a DOC measure may be used to provide an indication of confidence in a depth of consciousness assessment based on an awareness metric. In an embodiment, one or the other of a DOC measure and an awareness metric may be used to provide an indication of a patient's depth of consciousness (e.g., by one “overriding” the other).
摘要:
Methods and systems are provided that allow for the simultaneous calculation of pulse and regional blood oxygen saturation. An oximeter system that includes a sensor with a plurality of emitters and detectors may be used to calculate a pulse and/or regional blood oxygen saturation. A plurality of light signals may be emitted from light emitters. A first light signal may be received at a first light detector and a second light signal may be received at a second light detector. A pulse and/or regional blood oxygen saturation value may be calculated based on the received first and/or second light signals. The pulse and regional blood oxygen saturation values may be calculated substantially simultaneously. The calculated pulse and regional blood oxygen saturation values as well as other blood oxygen saturation values may be displayed simultaneously in a preconfigured portion of a display.
摘要:
The present disclosure describes techniques that may provide more accurate estimates of arterial oxygen saturation using pulse oximetry by switching between a wavelength spectrum of at least a first and a second light source so that the arterial oxygen saturation estimates at low (e.g., in the range below 75%), medium (e.g., greater than or equal to 75% and less than or equal to 84%), and high (e.g., greater than 84% range) arterial oxygen saturation values are more accurately calculated. In one embodiment, light emitted from a near 660 nm and a near 900 nm emitter pair may be used when the arterial oxygen saturation range is high. In another embodiment, light emitted from a near 730 nm and a near 900 nm emitter pair may be used when the arterial oxygen saturation range is low. In yet another embodiment, light emitted from both a near 660 nm-900 nm emitter pair and light emitted from a near 730 nm-900 nm emitter pair may be used when the arterial oxygen saturation range is in the middle range. Priming techniques may also be used to reduce or eliminate start up delays of certain oximetry system components.