摘要:
A method and apparatus for providing a high-quality representation of a volume having a real-time 3-D reconstruction therein of movement of an object, wherein the real-time movement of the object is determined using a lower-quality representation of only a portion of the volume. The merger of 3-D angiography image representations acquired with other modalities, such as MR or CT, is disclosed. MR or CT modality images are registered with the 3-D Angiography data, such that those other images are brought into the same coordinate frame as the 3-D Angiography images. Movement of the object is detected in a 2-D X-ray fluoroscopy image and is reconstructed in a 3-D mode.
摘要:
A method and apparatus for providing a high-quality representation of a volume having a real-time 3-D reconstruction therein of movement of a catheter, wherein its real-time movement is determined using a lower-quality representation of only a portion of the volume. Movement of the catheter is detected in a 2-D X-ray fluoroscopy image and is reconstructed in a 3-D angiography (X-ray) reconstruction. Described is a catheter design for easier detection, and a technique for 3-D reconstruction of a catheter from real-time 2-D fluoroscopic images and stored 3-D angiography data, so as to present the 3-D reconstructed catheter in the common coordinate frame.
摘要:
A method and apparatus for providing a high-quality representation of a volume having a real-time 3-D reconstruction therein of movement of an object, wherein the real-time movement of the object is determined using a lower-quality representation of only a portion of the volume. Movement of the object is detected in a 2-D X-ray fluoroscopy image and is reconstructed in a 3-D angiography (X-ray) reconstruction. Using a common C-arm and X-ray geometry advantageously, the 2-D and 3-D data representative of vascular structures of a patient is acquired, thereby facilitating the merger of the real-time 2-D fluoroscopic images with the 3-D reconstructed vascular structures in a common 3-D-visualization framework. Also described is a technique for 3-D reconstruction of a catheter from real-time 2-D fluoroscopic images and stored 3-D angiography data, so as to present the 3-D reconstructed catheter in the common coordinate frame. The merger of 3-D angiography image representations acquired with other modalities, such as MR or CT, is also disclosed.
摘要:
A system includes acquisition of a first three-dimensional image of a patient volume using a magnetic resonance imaging scanner, acquisition of a second three-dimensional image of the patient volume using cone beam radiation emitted by the linear accelerator, and generation of a radiation treatment plan based on the first image and the second image.
摘要:
Some aspects include acquisition of a first plurality of projection images of a volume using a megavoltage x-ray source, each of the first plurality of projection images associated with a respective one of a first plurality of locations of the megavoltage x-ray source, acquisition of a second plurality of projection images of the volume using a kilovoltage x-ray source, each of the second plurality of projection images associated with a respective one of a second plurality of locations of the kilovoltage x-ray source, and performance of digital tomosynthesis reconstruction to generate a three-dimensional image of the volume based on the first plurality of projection images and the second plurality of projection images. The first axis may be perpendicular to the second axis.
摘要:
A system includes acquisition of a three-dimensional computed tomography image of a patient volume at a computed tomography scanner, acquisition of projection images of the patient volume located at an isocenter of a linear accelerator, and determination of a transformation between a coordinate system of the linear accelerator and a coordinate system of the three-dimensional computed tomography image based on the projection images.
摘要:
A system and method for tomosynthesis, the method including emitting a respective imaging x-ray from each of a plurality of imaging x-ray sources disposed in a fixed relation with respect to one another, acquiring x-ray absorption projections of an object, each of the x-ray absorption projections associated with an imaging x-ray emitted by a respective one of the plurality of imaging x-ray sources, and performing digital tomosynthesis using the x-ray absorption projections to generate a cross-sectional image of the object.
摘要:
A system includes acquisition of a first three-dimensional image of a patient volume using a magnetic resonance imaging scanner, acquisition of a second three-dimensional image of the patient volume using cone beam radiation emitted by the linear accelerator, and generation of a radiation treatment plan based on the first image and the second image.
摘要:
A 4-dimensional digital tomosynthesis system includes an x-ray source, an x-ray detector and a processor. The x-ray source is suitable for emitting x-ray beams to an object with a periodic motion. The periodic motion is divided into (n+1) time intervals, n being a positive integer. Each of the (n+1) time intervals is associated with a time instance ti, i=0, 1, 2, . . . , n. The x-ray detector is coupled to the x-ray source for acquiring projection radiographs of the object at each time instance ti for each scan angle based on the x-ray beams. The processor is communicatively coupled to the x-ray source and the x-ray detector for controlling the x-ray source and processing data received from the x-ray detector such that all projection radiographs acquired from all scan angles for each time instance ti are reconstructed and (n+1) sets of cross sections of the object are obtained. The cross section is either a coronal cross section or a sagittal cross section. Each of the (n+1) sets of cross sections is for a different time instance ti.
摘要:
A projection system for projecting a shape onto a scene (e.g., the surface of an object, the body of a patient, or the like) so that the shape appears to be projected via a light beam emanating from a desired source location includes two or more projection assemblies for projecting planes of light which intersect the scene to form light stripes on the scene. The intersection of the light stripes defines a point of light projected onto the scene so that the point of light appears to emanate from the source location. The first and second projection assemblies rotate about first and second axes which extend through the source location for controlling the position of the point of light on the scene.