Abstract:
A method of generating complementary masks based on a target pattern having features to be imaged on a substrate for use in a multiple-exposure lithographic imaging process. The method includes the steps of: defining an initial H-mask corresponding to the target pattern; defining an initial V-mask corresponding to the target pattern; identifying horizontal critical features in the H-mask having a width which is less than a predetermined critical width; identifying vertical critical features in the V-mask having a width which is less than a predetermined critical width; assigning a first phase shift and a first percentage transmission to the horizontal critical features, which are to be formed in the H-mask; and assigning a second phase shift and a second percentage transmission to the vertical critical features, which are to be formed in the V-mask. The method further includes the step of assigning chrome to all non-critical features in the H-mask and the V-mask. The non-critical features are those features having a width which is greater than or equal to the predetermined critical width. The non-critical features are formed in the H-mask and the V-mask utilizing chrome. The target pattern is then imaged on the substrate by imaging both the H-mask and V-mask.
Abstract:
A method of generating complementary masks based on a target pattern having features to be imaged on a substrate for use in a multiple-exposure lithographic imaging process is disclosed. The method includes defining an initial H-mask and an initial V-mask corresponding to the target pattern; identifying horizontal critical features in the H-mask and vertical critical features in the V-mask; assigning a first phase shift and a first percentage transmission to the horizontal critical features, which are to be formed in the H-mask; and assigning a second phase shift and a second percentage transmission to the vertical critical features, which are to be formed in the V-mask. The method further includes the step of assigning chrome to all non-critical features in the H-mask and the V-mask.
Abstract:
A method of generating complementary masks for use in a dark field double dipole imaging process. The method includes the steps of identifying a target pattern having a plurality of features, including horizontal and vertical features; generating a horizontal mask based on the target pattern, where the horizontal mask includes low contrast vertical features. The generation of the horizontal mask includes the steps of optimizing the bias of the low contrast vertical features contained in the horizontal mask; and applying assist features to the horizontal mask. The method further includes generating a vertical mask based on the target pattern, where the vertical mask contains low contrast horizontal features. The generation of the vertical mask includes the steps of optimizing the bias of low contrast horizontal features contained in the vertical mask; and applying assist features to the vertical mask.
Abstract:
A method of generating complementary masks for use in a dark field double dipole imaging process. The method includes the steps of identifying a target pattern having a plurality of features, including horizontal and vertical features; generating a horizontal mask based on the target pattern, where the horizontal mask includes low contrast vertical features. The generation of the horizontal mask includes the steps of optimizing the bias of the low contrast vertical features contained in the horizontal mask; and applying assist features to the horizontal mask. The method further includes generating a vertical mask based on the target pattern, where the vertical mask contains low contrast horizontal features. The generation of the vertical mask includes the steps of optimizing the bias of low contrast horizontal features contained in the vertical mask; and applying assist features to the vertical mask.
Abstract:
A method of transferring a lithographic pattern onto a substrate by use of a lithographic apparatus. The method includes the steps of: (1) defining features to be printed on the substrate; (2) determining which of the features require assist features to be disposed adjacent thereto in order for the features to be printed within defined resolution limits; (3) generating a mask containing the features to be printed and the assist features; (4) performing a first illumination process so as to print the features on the substrate, the first illumination process resulting in the partial printing of the assist features on the substrate; and (5) performing a second illumination process so as to reduce the amount of the assist features printed on the substrate; the second illumination process entails the step of performing a quadrapole illumination.
Abstract:
A method of generating complementary masks based on a target pattern having features to be imaged on a substrate for use in a multiple-exposure lithographic imaging process is disclosed. The method includes defining an initial H-mask and an initial V-mask corresponding to the target pattern; identifying horizontal critical features in the H-mask and vertical critical features in the V-mask; assigning a first phase shift and a first percentage transmission to the horizontal critical features, which are to be formed in the H-mask; and assigning a second phase shift and a second percentage transmission to the vertical critical features, which are to be formed in the V-mask. The method further includes the step of assigning chrome to all non-critical features in the H-mask and the V-mask.
Abstract:
A method for decomposing a target circuit pattern containing features to be imaged into multiple patterns. The process includes the steps of separating the features to be printed into a first pattern and a second pattern; performing a first optical proximity correction process on the first pattern and the second pattern; determining an imaging performance of the first pattern and the second pattern; determining a first error between the first pattern and the imaging performance of the first pattern, and a second error between the second pattern and the imaging performance of said second pattern; utilizing the first error to adjust the first pattern to generate a modified first pattern; utilizing the second error to adjust the second pattern to generate a modified second pattern; and applying a second optical proximity correction process to the modified first pattern and the modified second pattern.
Abstract:
A method of generating complementary masks for use in a multiple-exposure lithographic imaging process. The method includes the steps of: identifying a target pattern having a plurality of features comprising horizontal and vertical edges; generating a horizontal mask based on the target pattern; generating a vertical mask based on the target pattern; performing a shielding step in which at least one of the vertical edges of the plurality of features in the target pattern is replaced by a shield in the horizontal mask, and in which at least one of the horizontal edges of the plurality of features in the target pattern is replaced by a shield in the vertical mask, where the shields have a width which is greater that the width of the corresponding feature in the target pattern; performing an assist feature placement step in which sub-resolution assist features are disposed parallel to at least one of the horizontal edges of the plurality of features in the horizontal mask, and are disposed parallel to at least one of the vertical edges of the plurality of features in the vertical mask, and performing a feature biasing step in which at least one of the horizontal edges of the plurality of features in the horizontal mask are adjusted such that the resulting feature accurately reproduces the target pattern, and at least one of the vertical edges of the plurality of features in the vertical mask are adjusted such that the resulting feature accurately reproduces the target pattern.
Abstract:
A method of generating complementary masks based on a target pattern having features to be imaged on a substrate for use in a multiple-exposure lithographic imaging process. The method includes the steps of: defining an initial H-mask corresponding to the target pattern; defining an initial V-mask corresponding to the target pattern; identifying horizontal critical features in the H-mask having a width which is less than a predetermined critical width; identifying vertical critical features in the V-mask having a width which is less than a predetermined critical width; assigning a first phase shift and a first percentage transmission to the horizontal critical features, which are to be formed in the H-mask; and assigning a second phase shift and a second percentage transmission to the vertical critical features, which are to be formed in the V-mask. The method further includes the step of assigning chrome to all non-critical features in the H-mask and the V-mask. The non-critical features are those features having a width which is greater than or equal to the predetermined critical width. The non-critical features are formed in the H-mask and the V-mask utilizing chrome. The target pattern is then imaged on the substrate by imaging both the H-mask and V-mask.
Abstract:
A method for decomposing a target pattern containing features to be printed on a wafer into multiple patterns. The method includes the steps of: (a) determining a minimum critical dimension and pitch associated with a process to be utilized to image the multiple patterns; (b) generating an anchoring feature; (c) disposing the anchoring feature adjacent a first feature of the target pattern; (d) growing the anchoring feature a predetermined amount so as to define a first area; (e) assigning any feature within the first area to a first pattern; (f) disposing the anchoring feature adjacent a second feature of the target pattern; (g) growing the anchoring feature the predetermined amount so as to define a second area; and (h) assigning any feature within the second area to a second pattern. Steps (c)-(h) are then repeated until the densely spaced features within the target pattern have been assigned to either the first or second pattern.