Abstract:
Methods and apparatus for controlling flare in roll-forming processes are disclosed. An example method involves predefining a plurality of position values to adjust a tilt angle of a flange roller and adjusting the tilt angle of the flange roller based on one of the pre-defined position values to change an amount of flare in a zone of a component. The one of the pre-defined position values is associated with the zone of the component.
Abstract:
Methods and apparatus for controlling flare in roll-forming processes are disclosed. An example method involves predefining a plurality of position values to adjust a tilt angle of a flange roller and adjusting the tilt angle of the flange roller based on one of the pre-defined position values to change an amount of flare in a zone of a component. The one of the pre-defined position values is associated with the zone of the component.
Abstract:
Methods and apparatus for controlling flare in roll-forming processes are disclosed. An example method of controlling flare involes moving a material through a roll-forming process and measuring the material to obtain a flare characteristic associated with a zone of the material. A position of a roller is then automatically varied to change the flare characteristic associated with a zone of the material as the material moves through the roll-forming process.
Abstract:
A mounting assembly for supporting a fuel supply on a vehicle, which is specifically adapted for the operable support and positioning of an auxiliary fuel supply. The vehicle with which the mounting assembly is utilized may vary significantly, but is primarily structured for use on mine haul vehicles, bulldozers, and other heavy duty commercial vehicles, wherein the operation thereof is significantly benefited or enhanced through the provision of an auxiliary, or alternate fuel supply such as, but not limited to, liquid natural gas (LNG), selectively powering the engine of the vehicle as determined by an improved electronic control system. The mounting assembly comprises a containment structure in the form of at least one fuel tank and a housing is structured to enclose the fuel tank. A base supports the housing and provides a pivot point about which the housing may be disposed between a first and second orientation.
Abstract:
A mounting assembly for supporting a fuel supply on a vehicle, which is specifically adapted for the operable support and positioning of an auxiliary fuel supply. The vehicle with which the mounting assembly is utilized may vary significantly, but is primarily structured for use on mine haul vehicles, bulldozers, and other heavy duty commercial vehicles, wherein the operation thereof is significantly benefited or enhanced through the provision of an auxiliary, or alternate fuel supply such as, but not limited to, liquid natural gas (LNG), selectively powering the engine of the vehicle as determined by an improved electronic control system. The mounting assembly comprises a containment structure in the form of at least one fuel tank and a housing is structured to enclose the fuel tank. A base supports both the housing and the fuel tank and a shield assembly, associated with the housing protect the fuel tank against impact in the working environment of the vehicle on which the fuel supply and containment structure are disposed.
Abstract:
A system and assembly for modifying a diesel powered electric generator preferably of the reciprocating engine type to the extent that the generator is capable of running on either 100% diesel fuel or in a “bi-fuel” mode which is defined as a mixture of methane based gas and diesel fuel. The system and associated assembly is specifically designed to provide for the automatic or manual switching between the full diesel mode and the gas-diesel fuel or bi-fuel mode for continuous generator operation without interruption in generator output and at substantially equivalent or comparable efficiency levels. A gas control sub-assembly is included for controlling the amount of gas supplied to the driving engine of the generator while operating in the bi-fuel mode, a diesel control sub-assembly is included and designed for controlling the amount of diesel fuel supply to the driving engine while operating in the bi-fuel mode, and an electronic control an monitoring sub-assembly is included and designed for controlling various components of the overall system and is further structured to monitor and display certain data associated with operation and continuous current output within pre-determined, acceptable parameters.
Abstract:
A mounting assembly for supporting a fuel supply on a vehicle, which is specifically adapted for the operable support and positioning of an auxiliary fuel supply. The vehicle with which the mounting assembly is utilized may vary significantly, but is primarily structured for use on mine haul vehicles, bulldozers, and other heavy duty commercial vehicles, wherein the operation thereof is significantly benefited or enhanced through the provision of an auxiliary, or alternate fuel supply such as, but not limited to, liquid natural gas (LNG), selectively powering the engine of the vehicle as determined by an improved electronic control system. The mounting assembly comprises a containment structure in the form of at least one fuel tank and a housing is structured to enclose the fuel tank. A base supports the housing and provides a pivot point about which the housing may be disposed between a first and second orientation.
Abstract:
A bi-fuel refrigeration system and method of retrofitting a refrigeration system for the same. The system includes an engine in energy supplying relation to a refrigeration unit, said engine running off a constant predetermined amount of gaseous fuel and a variable amount of distillate fuel. An electronic control unit generates control signals to dictate the ratio of gaseous to distillate fuel is used by the engine. An actuator is structured to provide isochronous control of the system, and is accordingly disposed in flow adjusting relation to the distillate fuel intake to variably adjust the amount of distillate fuel injected into the engine. The method of retrofitting includes at least inserting a gaseous fuel supply and mixer into the air supply line, inserting an electronic control unit for isochronous control of the system, and inserting an actuator for isochronous control of the amount of distillate fuel used in the system.
Abstract:
A mounting assembly for supporting a fuel supply on a vehicle, which is specifically adapted for the operable support and positioning of an auxiliary fuel supply. The vehicle with which the mounting assembly is utilized may vary significantly, but is primarily structured for use on mine haul vehicles, bulldozers, and other heavy duty commercial vehicles, wherein the operation thereof is significantly benefited or enhanced through the provision of an auxiliary, or alternate fuel supply such as, but not limited to, liquid natural gas (LNG), selectively powering the engine of the vehicle as determined by an improved electronic control system. The mounting assembly comprises a containment structure in the form of at least one fuel tank and a housing is structured to enclose the fuel tank. A base supports the housing and provides a pivot point about which the housing may be disposed between a first and second orientation.
Abstract:
A bi-fuel control system and assembly for modifying and operating a diesel engine to the extent that the engine is capable of running in either a full diesel fuel mode or a bi-fuel mode, where bi-fuel is defined as a mixture of a methane based gas and diesel fuel. The control system and assembly are designed to provide for either manual or automatic transfer between modes for continuous engine operation without interruption in output and at substantially equivalent efficiency levels. A gas control sub-system and sub-assembly are provided to control the amount of gas supplied to the diesel engine in the bi-fuel mode, and an electronic control sub-system and sub-assembly are provided to control the overall system and assembly based on engine load as determined from the intake manifold air pressure.