摘要:
A switching device for heterojunction integrated circuits is disclosed. According to one aspect, the switching device is configured to protect a circuit from an electro-static discharge (ESD) event. The switching device includes a second base contact region that is configured to be electrically floating, a first base contact region and a collector contact region that are coupled to a first input terminal of the switching device, and an emitter contact region that is coupled to a second input terminal of the switching device. Due in part to capacitive coupling between the first base contact region and the second base contact region, the switching device exhibits a low transient trigger voltage and a fast response to ESD events. Further, the switching device exhibits a high DC trigger voltage (for example, greater than 20V), while maintaining relatively low leakage current during operation (for example, less than about 0.5 μA at 20V DC.
摘要:
Apparatus and methods for precision mixed-signal electronic circuit protection are provided. In one embodiment, an apparatus includes a p-well, an n-well, a poly-active diode structure, a p-type active region, and an n-type active region. The poly-active diode structure is formed over the n-well, the p-type active region is formed in the n-well on a first side of the poly-active diode structure, and the n-type active region is formed along a boundary of the p-well and the n-well on a second side of the poly-active diode structure. During a transient electrical event the apparatus is configured to provide conduction paths through and underneath the poly-active diode structure to facilitate injection of carriers in the n-type active region. The protection device can further include another poly-active diode structure formed over the p-well to further enhance carrier injection into the n-type active region.
摘要:
Apparatuses and methods for providing transient electrical event protection are disclosed. In one embodiment, an apparatus comprises a detection and timing circuit, a current amplification circuit, and a clamping circuit. The detection and timing circuit is configured to detect a presence or absence of a transient electrical event at a first node, and to generate a first current for a first duration upon detection of the transient electrical event. The current amplification circuit is configured to receive the first current from the detection and timing circuit and to amplify the first current to generate a second current. The clamping circuit is electrically connected between the first node and a second node and receives the second current for activation. The clamping circuit is configured to activate a low impedance path between the first and second nodes in response to the second current, and to otherwise deactivate the low impedance path.
摘要:
Apparatus and methods for precision mixed-signal electronic circuit protection are provided. In one embodiment, an apparatus includes a p-well, an n-well, a poly-active diode structure, a p-type active region, and an n-type active region. The poly-active diode structure is formed over the n-well, the p-type active region is formed in the n-well on a first side of the poly-active diode structure, and the n-type active region is formed along a boundary of the p-well and the n-well on a second side of the poly-active diode structure. During a transient electrical event the apparatus is configured to provide conduction paths through and underneath the poly-active diode structure to facilitate injection of carriers in the n-type active region. The protection device can further include another poly-active diode structure formed over the p-well to further enhance carrier injection into the n-type active region.
摘要:
A switching device for heterojunction integrated circuits is disclosed. According to one aspect, the switching device is configured to protect a circuit from an electro-static discharge (ESD) event. The switching device includes a second base contact region that is configured to be electrically floating, a first base contact region and a collector contact region that are coupled to a first input terminal of the switching device, and an emitter contact region that is coupled to a second input terminal of the switching device. Due in part to capacitive coupling between the first base contact region and the second base contact region, the switching device exhibits a low transient trigger voltage and a fast response to ESD events. Further, the switching device exhibits a high DC trigger voltage (for example, greater than 20V), while maintaining relatively low leakage current during operation (for example, less than about 0.5 μA at 20V DC.
摘要:
A bi-directional protection device includes a bi-directional NPN bipolar transistor including an emitter/collector formed from a first n-well region, a base formed from a p-well region, and a collector/emitter formed from a second n-well region. P-type active regions are formed in the first and second n-well regions to form a PNPNP structure, which is isolated from the substrate using dual-tub isolation consisting of an n-type tub and a p-type tub. The dual-tub isolation prevents induced latch-up during integrated circuit powered stress conditions by preventing the wells associated with the PNPNP structure from injecting carriers into the substrate. The size, spacing, and doping concentrations of active regions and wells associated with the PNPNP structure are selected to provide fine-tuned control of the trigger and holding voltage characteristics to enable the bi-directional protection device to be implemented in high voltage applications using low voltage precision interface signaling.
摘要:
Bi-directional blocking voltage protection devices and methods of forming the same are disclosed. In one embodiment, a protection device includes an n-well and first and second p-wells disposed on opposite sides of the n-well. The first p-well includes a first P+ region and a first N+ region and the second p-well includes a second P+ region and second N+ region. The device further includes a third P+ region disposed along a boundary of the n-well and the first p-well and a fourth P+ region disposed along a boundary of the n-well and the second p-well. A first gate is disposed between the first N+ region and the third P+ region and a second gate is disposed between the second N+ region and the fourth P+ region. The device provides bi-directional blocking voltage protection during high energy stress events, including in applications operating at very low to medium swing voltages.
摘要:
Metal oxide semiconductor (MOS) protection circuits and methods of forming the same are disclosed. In one embodiment, an integrated circuit includes a pad, a p-type MOS (PMOS) transistor, and first and second n-type MOS (NMOS) transistors. The first NMOS transistor includes a drain, a source and a gate electrically connected to the pad, a first supply voltage, and a drain of the PMOS transistor, respectively. The second NMOS transistor includes a gate, a drain, and a source electrically connected to a bias node, a second supply voltage, and a source of the PMOS transistor, respectively. The source of the second NMOS transistor is further electrically connected to a body of the PMOS transistor so as to prevent a current flowing from the drain of the PMOS transistor to the second supply voltage through the body of PMOS transistor when a transient signal event is received on the pad.
摘要:
Apparatus and methods for electronic circuit protection are disclosed. In one embodiment, an actively-controlled protection circuit includes a detector, a timer, a current source and a latch. The detector is configured to generate a detection signal when the detector determines that a transient signal satisfies a first signaling condition. The timer is configured to receive the detection signal, and to generate a current control signal. The current control signal is provided to a current source, which produces a trigger current at least partly in response to the control signal. The trigger current is provided to a node of the latch, thereby enhancing the conductivity modulation of the latch and selectively controlling the activation voltage of the latch.
摘要:
A semiconductor switch comprises a PNPN structure arranged to provide an SCR-like functionality, and a MOS gate structure, preferably integrated on a common substrate. The switch includes ohmic contacts for the MOS gate, and for the cathode and gate regions of the PNPN structure; the anode contact is intrinsic. A fixed voltage is typically applied to an external node. The MOS gate structure allows current to be conducted between the external node and the intrinsic anode when on, and the PNPN structure conducts the current from the anode to the cathode when an appropriate voltage is applied to the gate contact. Regenerative feedback keeps the switch on once it begins to conduct. The MOS gate inhibits the flow of current between the external node and anode—and thereby turns off the switch—when off. When on, the MOS gate's channel resistance serves as a ballast resistor.