Abstract:
An insulated-gate semiconductor device, which has trenches arranged in a chip structure, the trenches defining both sidewalls in a first and second sidewall surface facing each other, includes: a first unit cell including a main-electrode region in contact with a first sidewall surface of a first trench, a base region in contact with a bottom surface of the main-electrode region and the first sidewall surface, a drift layer in contact with a bottom surface of the base region and the first sidewall surface, and a gate protection-region in contact with the second sidewall surface and a bottom surface of the first trench; and a second unit cell including an operation suppression region in contact with a first sidewall surface and a second sidewall surface of a second trench, wherein the second unit cell includes the second trench located at one end of an array of the trenches.
Abstract:
Embodiments of a silicon carbide (SiC) device are provided herein. In some embodiments, a silicon carbide (SiC) device may include a gate electrode disposed above a SiC semiconductor layer, wherein the SiC semiconductor layer comprises: a drift region having a first conductivity type; a well region disposed adjacent to the drift region, wherein the well region has a second conductivity type; and a source region having the first conductivity type disposed adjacent to the well region, wherein the source region comprises a source contact region and a pinch region, wherein the pinch region is disposed only partially below the gate electrode, wherein a sheet doping density in the pinch region is less than 2.5×1014 cm−2, and wherein the pinch region is configured to deplete at a current density greater than a nominal current density of the SiC device to increase the resistance of the source region.
Abstract:
In one embodiment, a method of manufacturing a silicon-carbide (SiC) device includes receiving a selection of a specific terrestrial cosmic ray (TCR) rating at a specific applied voltage, determining a breakdown voltage for the SiC device based at least on the specific TCR rating at the specific applied voltage, determining drift layer design parameters based at least on the breakdown voltage. The drift layer design parameters include doping concentration and thickness of the drift layer. The method also includes fabricating the SiC device having a drift layer with the determined drift layer design parameters. The SiC device has the specific TCR rating at the specific applied voltage.
Abstract:
A silicon controlled rectifier includes a substrate, a well, a deep doped region, a first doped region, a second doped region, a third doped region, and a fourth doped region. The well is disposed on the substrate and underneath a cell region. The deep doped region is disposed in the well. The first doped region has a first conductivity type, and is disposed in the well. The second doped region and third doped region have the first conductivity type and are disposed on the deep doped region. The fourth doped region has a second conductivity type, and is disposed between the second doped region and the third doped region. The fourth doped region is disposed on the deep doped region, and is electrically isolated from the well through the deep doped region, the second doped region, and the third doped region.
Abstract:
A semiconductor device suitable for power applications includes a thyristor epitaxial layer structure defining an anode region offset vertically from a cathode region with a plurality of intermediate regions therebetween. An anode electrode is electrically coupled to the anode region. A cathode electrode is electrically coupled to the cathode region. A switchable current path that extends vertically between the anode region and the cathode region has a conducting state and a non-conducting state. An epitaxial resistive region is electrically coupled to and extends laterally from one of the plurality of intermediate regions. An FET is provided having a channel that is electrically coupled to the epitaxial resistive region. The FET can be configured to inject (or remove) electrical carriers into (or from) the one intermediate region via the epitaxial resistive region in order to switch the switchable current path between its non-conducting state and its conducting state.
Abstract:
A bipolar high voltage/power semiconductor device has a low voltage terminal and a high voltage terminal. The device has a drift region of a first conductivity type and having first and second ends. In one. example, a region of the second conductivity type is provided at the second end of the drift region connected directly to the high voltage terminal. In another example, a buffer region of the first conductivity type is provided at the second end of the drift region and a region of a second conductivity type is provided on the other side of the buffer region and connected to the high voltage terminal. Plural electrically floating island regions are provided within the drift region at or towards the second end of the drift region, the plural electrically floating island regions being of the first conductivity type and being more highly doped than the drift region.
Abstract:
A bipolar high voltage/power semiconductor device has a low voltage terminal and a high voltage terminal. The device has a drift region of a first conductivity type and having first and second ends. In one example, a region of the second conductivity type is provided at the second end of the drift region connected directly to the high voltage terminal. In another example, a buffer region of the first conductivity type is provided at the second end of the drift region and a region of a second conductivity type is provided on the other side of the buffer region and connected to the high voltage terminal. Plural electrically floating island regions are provided within the drift region at or towards the second end of the drift region, the plural electrically floating island regions being of the first conductivity type and being more highly doped than the drift region.
Abstract:
An MIS gate type semiconductor device having a low resistive loss in the ON state and a wide safe operation region is disclosed. In this semiconductor device, the p-base layer of the thyristor and the emitter electrode are connected together using a suitable nonlinear device. As a result, lower loss and higher capacity of the semiconductor device can be realized in order not only to make it easy to turn ON the thyristor but also to make the safe operation region wide.
Abstract:
Power semiconductor devices have a plurality of semiconductor layers of alternating p-type and n-type conductivity and top and bottom device surfaces. The top semiconductor layer forms a control layer (60). A semiconductor layer junction, remote from both device surfaces, forms a blocking p-n junction (54) capable of sustaining the applied device voltage. A top ohmic contact overlays a top conductive region (64) extending from the top surface into the control layer (60). A conductive tub region (62), spaced apart from the top conductive region (64), extends from the top surface at least through the control layer (60). A field effect region (80) is disposed in the control layer (60) between the top conductive region (64) and tub region (62). A gate contact (18) is formed over the field effect region (80) causing the creation and interruption of a conductive channel (82) between the top conductive region (64) and conductive tub region (62) so as to turn the device on and off.
Abstract:
A depletion mode thyristor includes a plurality of regenerative segments and a plurality of non-regenerative segments, each of which is elongated in a first direction. Regenerative and non-regenerative segments are interleaved in a second direction perpendicular to said first direction. A plurality of regenerative segments may be disposed between adjacent non-regenerative segments. Adjacent regenerative or non-regenerative segments are spaced apart by gate electrode segments which are effective, upon application of an appropriate bias voltage, for pinching off the regenerative segments to force the current therein to transfer to the non-regenerative segments to turn the device off. This structure enables large quantities of current to be transferred from regenerative segments to non-regenerative segments during turn-off without inducing detrimental current crowding.