摘要:
A dual-cavity toroidal Continuously Variable Transmission provided with co-axial input/output arrangement where a drum assembly is used to transfer torque from a central driven disk of the CVT to the output shaft of the CVT and including at least one embedded resilient member to reduce torque fluctuations present in the CVT.
摘要:
A method where the spin factor is looked up in a table; the slip factor is measured and the clamping pressure is adjusted to achieve a slip/spin ratio provided in a desired range is described herein. According to another aspect, an active mechanical clamping mechanism using a longitudinally movable contact point is also described.
摘要:
A method where the spin factor is looked up in a table; the slip factor is measured and the clamping pressure is adjusted to achieve a slip/spin ratio provided in a desired range is described herein. According to another aspect, an active mechanical clamping mechanism using a longitudinally movable contact point is also described.
摘要:
Generally stated, various embodiments described herein concern a toroidal CVT provided with parking zones where the rollers are brought when the CVT is powered down. More specifically, a portion of the toroidal surfaces of the disks is reserved as a parking zone therefore preventing premature wear and/or damages to the working portion of the disks.
摘要:
Generally stated, various embodiments described herein concern a toroidal CVT provided with parking zones where the rollers are brought when the CVT is powered down. More specifically, a portion of the toroidal surfaces of the disks is reserved as a parking zone therefore preventing premature wear and/or damages to the working portion of the disks.
摘要:
A balanced rotary cycling machine suitable for use as an internal combustion engine, compressed gas or steam engine, compressor or pump is disclosed herein. The rotor assembly consists of four articulating pistons where the opposite pistons are inter-linked with each other by pivoted rods comprising a parallelogram mechanism and therefore eliminating a need for pivots between pistons. The rotor assembly rotates inside or outside of a circular or non-circular stator depending on the configuration chosen. A variety of mechanisms for shape deformation of four piston assembly during its rotating cycle is also disclosed herein, as well as detailed descriptions of preferred embodiments, including a four cycle internal combustion engine with circular stator, marine engine with polymer parts and a four cycle automobile rotary engine with conventional oil pan. In addition, a method of operation of external rotary combustion engine, employing a high-pressure compressor and an external combustion chamber, is disclosed. This invention also teaches a novel lubrication system for rotary engine providing low emissions. The engine has few moving parts, simplified circular or semi-circular stator shape and utilizes simple and effective sealing techniques. It is fully balanced, has very low friction and heat losses and can employ a pre-designed configuration of the combustion chamber for a desired compression ratio and power output.
摘要:
A drive system suitable for use in a variable transmission with a plurality of rotatable and adjustable disk members, gear means adapted for contact with the plurality of disk members, carriage means for mounting the gear means and configured for axial movement along the axis of a rotatable drive shaft and a rotatable cone adapted for contact with the plurality of disk members, the cone and the conical gear means connected for relative rotation by the plurality of disk members, the disk members being adjustable transversely relative to the axis of rotation for maintaining positive contact with said rotatable cone.
摘要:
The invention relates to a method for achieving a continuously variable transmission. A power transmission is realized by a drive and driven members creating at least one point of a contact between each other. Each of members may be at least one roller pressed against an opposite members surfaces with virtual surfaces. The method consists in adjustment of movement directions between the surfaces and the roller defined by a first movement vector of the surface relative to contact point, a second movement vector of the roller and a third movement vector of rolling direction of the roller, a steering angle and a correction angle. The steering angle is varied in accordance with a desired transmission ratio and lateral/thrust load on the roller while respecting the deformability of the contact points.
摘要:
The present invention relates to a door operating system for controlling the movement of a door, more particularly to “no touch” door openers for public washrooms and households. The system has a motor with a gear chain where the high gear is generally semicircularly shaped engaged with a swinging arm coupled with the door through the roller and a pilot plate. The unit is activated upon receipt of the signal from overhead passive infrared or hand proximity detecting sensors and has a controlling system to provide for opening and closing the door, as well as retraction of the arm in the event of door encountering an obstacle or in an overload condition of the motor. The arm and a gear are linked pivotally with each other and with the unit housing. They are coupled through a spring suspension system and have a clutch mechanism preventing overloading. The only external moving part is the arm, which is, along with geared sector, protected by a flexible member providing security to prevent accidental jamming of objects by it. The unit may be battery operated with a low voltage and low power AC/DC switching wall adapter. In autonomous operation it can provide up to 700 opening cycles without external power.
摘要:
The invention relates to a method for achieving a continuously variable transmission. A power transmission is realized by a drive and driven members creating at least one point of a contact between each other. Each of members may be at least one roller pressed against an opposite members surfaces with virtual surfaces. The method consists in adjustment of movement directions between the surfaces and the roller defined by a first movement vector of the surface relative to contact point, a second movement vector of the roller and a third movement vector of rolling direction of the roller, a steering angle and a correction angle. The steering angle is varied in accordance with a desired transmission ratio and lateral/thrust load on the roller while respecting the deformability of the contact points.