Abstract:
A scissor drive includes two legs which can be pivoted relative to one another about a pivot axis, each having a longitudinal axis and designed to be connected to an external component, and a motor/gear assembly that drives the relative pivoting movement of the two legs. The first leg includes a housing that is hollow at least in portions, a cavity defined in the hollow housing extending at least in portions along the longitudinal axis of the first leg, and the motor/gear assembly being received in the housing of the first leg at least in portions in the portion of the cavity that extends along the longitudinal axis of the first leg.
Abstract:
The invention relates to a drive device (20) for entrance and exit devices for public transportation vehicles, comprising a drive unit (22) that is arranged in and drives a rotary column (24) rotating about a rotational axis Z-Z during opening and closing operations, said column opening and closing the entrance and exit device. The drive unit (22) is held on the vehicle via a retaining component (40). The retaining component (40) acts as counter bearing for a torque of the drive unit (22). Between the drive unit (22) and the retaining component (40), a coupling device (72) is arranged, which enables a rotation of the drive unit (22) about the rotational axis Z-Z when a threshold value of the torque acting upon the drive unit is exceeded. Between the coupling device (72) and the retaining component (40), a bearing is provided, which enables a tumbling motion of the rotary column (24) with the coupling device (72) and prevents a rotation about the rotational axis Z-Z.
Abstract:
A method is disclosed for detecting the activation of a coupling in a damper actuator, the coupling engaging a drive motor and an adjustable damper with each other, so that the damper can be adjusted by means of the drive motor, and the engagement between the drive motor and the damper being disengaged if a force or a momentum acting on the damper exceeds a maximum value. The method comprises the following steps: detecting the indication of an adjustment rate, in particular a rotary speed of the drive motor; determining a gradient of the adjustment rate, in particular a rotary speed gradient, by the indication of the adjustment rate; determining the activation of the coupling by determining whether the determined gradient exceeds or falls below a predetermined threshold value of the gradient.
Abstract:
A door operator for selectively opening and closing a side hinge door. The door operator may include a motor with a drive shaft, an operator arm assembly, a door position sensor, and a controller. The operator arm assembly may include an output shaft operatively coupled to the drive shaft, an operator arm, and a clutch assembly mounted to the output shaft. The door position sensor, which may be electro-magnetic, signals the controller when the door is not closed. If the door has been manually pushed open, the controller signals the motor to rotate the drive shaft in the closing direction. In automatic mode, the output shaft and the operator arm are operatively engaged, but manual force to open the door overcomes static friction between the operator arm and friction discs in the clutch assembly, operatively disengaging the operator arm and output shaft until the manual force is removed.
Abstract:
The invention relates to a drive device (20) for entrance and exit devices for public transportation vehicles, comprising a drive unit (22) that is arranged in and drives a rotary column (24) rotating about a rotational axis Z-Z during opening and closing operations, said column opening and closing the entrance and exit device. The drive unit (22) is held on the vehicle via a retaining component (40). The retaining component (40) acts as counter bearing for a torque of the drive unit (22). Between the drive unit (22) and the retaining component (40), a coupling device (72) is arranged, which enables a rotation of the drive unit (22) about the rotational axis Z-Z when a threshold value of the torque acting upon the drive unit is exceeded. Between the coupling device (72) and the retaining component (40), a bearing is provided, which enables a tumbling motion of the rotary column (24) with the coupling device (72) and prevents a rotation about the rotational axis Z-Z.
Abstract:
A locking device for securing a motor vehicle component which is displaceable relative to a motor vehicle structure and which may be secured by means of the locking device within a displacement range in a respective position of rest reached by displacement is provided. The locking device comprising at least one first frictional element and at least one second frictional element, which is moved relative to the first frictional element upon displacement of the motor vehicle component and thereby may slide with a friction surface along a friction surface of the first frictional element under sliding friction conditions and which, in a respective position of rest of the motor vehicle component, with its friction surface bears against the friction surface of the second frictional element under static friction conditions. A flowable additional medium is provided which may be brought, upon a relative movement of the frictional elements, between their friction surfaces.
Abstract:
A clutch comprises an input pinion and an output pinion associated with a rotatable locking member that has a surface inclined with respect to an axis of rotation of the locking member. The surface cooperates with an engagement member, and the locking member is movable between a first position and a second position. In the first position, the surface forms a recess to receive the engagement member, and in the second position, the surface forms a projection to force the engagement member into abutment with the input pinion to establish a driveable connection between the input pinion and the output pinion.
Abstract:
A drive for a movable furniture element has an actuating element for moving the furniture element and a motor for driving the actuating element. The actuating element and the furniture element may at times be moved independently of one another, and a position measurement system is provided for determining both the position of the actuating element and the position of the furniture element.
Abstract:
A driving device for a hatch in a motor vehicle includes a first fastening element which can be connected to a stationary structural component, a second fastening element which can be connected to a movable structural component, a spindle drive including a threaded spindle having an axis of rotation and a spindle nut arranged on the threaded spindle, and a rotary drive having a driveshaft for rotating spindle to move the first fastening element axially relative to the second fastening element. A stroke detection sensor for continuously detecting the position of the movable structural component includes a rotatable sensor element driven in rotation by the driveshaft and a stationary sensor element for continuously detecting the rotational position of the rotatable sensor element. A gear reduction unit is provided between the driveshaft and the rotatable sensor element so the revolutions of the sensor element are reduced by about 14:1.
Abstract:
A refrigerator and/or freezer with an appliance carcass, can be closed by at least one door, and a powered door operating device for automatically operating the door. The door operating device has drives both automatically opening and closing the door.