摘要:
Temporal focusing of spatially chirped femtosecond laser pulses overcomes previous limitations for ablating high aspect ratio features with low numerical aperture (NA) beams. Simultaneous spatial and temporal focusing reduces nonlinear interactions, such as self-focusing, prior to the focal plane so that deep (˜1 mm) features with parallel sidewalls are ablated at high material removal rates.
摘要:
Temporal focusing of spatially chirped femtosecond laser pulses overcomes previous limitations for ablating high aspect ratio features with low numerical aperture (NA) beams. Simultaneous spatial and temporal focusing reduces nonlinear interactions, such as self-focusing, prior to the focal plane so that deep (˜1 mm) features with parallel sidewalls are ablated at high material removal rates.
摘要:
Femtosecond laser pulses are used to iteratively cut and image fixed as well as exsanguinated fresh tissue. Such images help to automate three-dimensional histological analysis of biological tissue. Cuts are accomplished with approximately 0.3 to 100 microJoule pulses to ablate tissue with one-micrometer precision. Permeability, immunoreactivity, and optical clarity of the remaining tissue is retained after pulsed laser cutting. Samples from transgenic mice that express fluorescent proteins retained their fluorescence to within micrometers of the cut surface.
摘要:
Ultrashort laser pulses are used to induce photodisruptive breakdown in vasculature in an animal to controllably produce hemorrhage, thrombosis or breach of the blood-brain barrier in individual, specifically-targeted blood vessels. Damage is limited to the targeted vessels such that neighboring vessels exhibit no signs of vascular damage, including vessels directly above and directly below the targeted vessel. Ultrashort laser pulses of lower energy are also used to observe and quantify the baseline and altered states of blood flow. Observation and measurement may be performed by TPLSM, OCT or other known techniques, providing a real-time, in vivo model for the dynamics and effects of vascular injury.
摘要:
Ultrashort laser pulses are used to induce photodisruptive breakdown in vasculature in an animal to controllably produce hemorrhage, thrombosis or breach of the blood-brain barrier in individual, specifically-targeted blood vessels. Damage is limited to the targeted vessels such that neighboring vessels exhibit no signs of vascular damage, including vessels directly above and directly below the targeted vessel. Ultrashort laser pulses of lower energy are also used to observe and quantify the baseline and altered states of blood flow. Observation and measurement may be performed by TPLSM, OCT or other known techniques, providing a real-time, in vivo model for the dynamics and effects of vascular injury.
摘要:
A method is provided for in vivo detection of a biochemical substance in an animal by culturing neurofluocytes that stably express a receptor of the biochemical substances by transfecting cells with cDNA of the receptor and a tag that will emit a detectable energy in the presence of the biochemical substance, implanting the neurofluocyte into the animal's brain; and detecting the energy emission of the tag. In a first embodiment, the biochemical substance is a neurotransmitter, the tag is a fluophore, and the step of detecting includes forming an opening in the animal's skull and optically detecting fluorescent emissions using a two-photon laser scanning microscope. Multiple biochemical substances can be simultaneously detected by culturing neurofluocytes that express different receptors and have different fluophor tags that produce fluorescent signals at distinguishable wavelengths.
摘要:
A method is provided for in vivo detection of a biochemical substance in an animal by culturing neurofluocytes that stably express a receptor of the biochemical substances by transfecting cells with cDNA of the receptor and a tag that will emit a detectable energy in the presence of the biochemical substance, implanting the neurofluocyte into the animal's brain; and detecting the energy emission of the tag. In a first embodiment, the biochemical substance is a neurotransmitter, the tag is a fluophore, and the step of detecting includes forming an opening in the animal's skull and optically detecting fluorescent emissions using a two-photon laser scanning microscope. Multiple biochemical substances can be simultaneously detected by culturing neurofluocytes that express different receptors and have different fluophor tags that produce fluorescent signals at distinguishable wavelengths.
摘要:
A sequence generator employing a neural network having its output coupled to at least one plurality of delay elements. The delayed outputs are fed back to an input interconnection network, wherein they contribute to the next state transition through an appropriate combination of interconnections.