摘要:
An apparatus and method (4,5,6,7,2) for capacitive measurement of electrophysiological signals (1) suppresses or reduces motion artifacts by providing a feedback mechanism. An average voltage between a capacitive sensor electrode (1) and the body (3) is controlled so as to reduce or minimize motion-induced signals.
摘要:
The present invention relates to an apparatus and method (4,5,6,7,2) for capacitive measurement of electrophysiological signals (1) wherein motion artifacts are suppressed or reduced by providing a feedback mechanism. An average voltage between a capacitive sensor electrode (1) and the body (3) is controlled so as to reduce or minimize motion-induced signals.
摘要:
The invention relates to a magnetic sensor device (10) comprising wires (11, 13) for the generation of a magnetic field with a first frequency f1 a GMR sensor (12) operated with an input current of a second frequency f2, and a demodulator (26) operated at a third frequency f3. In order to avoid signal corruption by phase noise and to improve the signal-to-noise ratio, the first, second and third frequencies are derived by a supply unit (121) from a common reference frequency fref. Said derivation may for example be achieved with the help of digital frequency dividers. Furthermore, phase detectors (PD1, PD2) may be used in a feedback control loop to assure predetermined relations between the phases of the three frequencies. In another embodiment of the invention, the phase and/or amplitude of a model signal, which is used to process a desired signal component in the output of the sensor, is tracked by an adaptation algorithm, for example a gradient descent.
摘要:
The invention relates to a magnetic sensor device (100) comprising a magnetic field generator (1) driven with an excitation current of a first frequency (f1) and a magnetic sensor element (e.g. a GIVER sensor (2)) driven with a sensor current (I2) of a second frequency (f2) for measuring reaction fields (HB) generated by magnetized particles (3). In an associated evaluation unit (10), a reference component (uQ) of the measurement signal (uGMR) is separated that depends on the excitation current (I1) and the sensor current (I2) but not on the presence of magnetized particles (3). The reference component (uQ) may particularly be produced by a combination of the self-magnetization (H2) of the magnetic sensor element (2) and cross-talk related currents. The reference component (uQ) may be isolated based on its phase with respect to a particle-dependent component of the measurement signal (uGMR) or based on its scaling with one of the current frequencies. Monitoring of the reference component (uQ) reveals variations in operating conditions, for example in the sensor gain, that can be used to calibrate the measurement results.
摘要:
The invention relates to a magnetic sensor device for the determination of magnetized particles (3) which comprises a magnetic field generator (1, 1′)(e.g. a conductor wire) that is driven with an excitation current (I1) of a first frequency (f1), and a magnetic sensor element (2) (e.g. a GMR resistance), that is driven with a sensor current (I2) of a second frequency (f2) for generating measurement signals (UGMR). A preprocessed signal (uf) is then generated from the measurement signal (UGMR) that comprises a predetermined frequency (Δf), and an evaluation unit (10) separates from this preprocessed signal a spurious component that does not depend on the presence of magnetized particles (3) in the sample chamber. The spurious component (UQ) may particularly be caused by self-magnetization (H2) of the magnetic sensor element (2) in combination with parasitic (capacitive or inductive) cross-talk. Furthermore, an unknown, variable phase-shift (φSP) in the preprocessed signal (uf) may be determined by varying the ratio between the spurious component and a particle-dependent target component. This variation may for example be achieved if, in an optimization stage (OS), the excitation current (I1) is conducted through a bypass resistor (R, R′) and/or if an additional capacitor is introduced between the magnetic field generator and the magnetic sensor element. The determined phase shift can then be used to adjust the phase of a demodulation signal (udem) such that the spurious component is suppressed.
摘要:
The invention relates to a method and a magnetic sensor device for the determination of the concentration of target particles (2) in a sample fluid, wherein the amount of the target particles (2) in a sensitive region (14) is observed by sampling measurement signals with associated sensor units (10a-10d). The target particles (2) may optionally be bound to binding sites (3) in the sensitive region, and a parametric binding curve, e.g. a Langmuir isotherm, may be fitted to the sampled measurement signals to determine the desired particle concentration in the sample. Moreover, parameters like the sampling rate and the size of the sensitive region (14) can be dynamically fitted during the ongoing sampling process to improve the signal-to-noise ratio. In another embodiment of the invention, single events corresponding to the movement of target particles into, out of, or within the sensitive region are detected and counted.
摘要:
A sensor device and a method for the determination of the amount of target particles at a contact surface adjacent to a sample chamber include detecting, by a detector, the target particles in the sample chamber by a sensor element, and providing at least one corresponding sensor signal. An evaluation unit determines the amount of target particles in a first zone at the contracts surface and in a second zone a distance away from the contact surface based on this sensor signal. In an optical measurement approach, frustrated total internal reflection taking place under different operating conditions, such as wavelength and/or angle of incidence, may be used to extract information about the first and second zones. In a magnetic measurement approach, different magnetic excitation fields may be used to excite magnetic target particles differently in the first and second zone.
摘要:
The invention relates to a sensor device (100) and a method for the determination of the amount of target particles (1) at a contact surface (112) adjacent to a sample chamber (2). Target particles (1) in the sample chamber are detected by a sensor element (SE) and at least one corresponding sensor-signal (s, s′) is provided. An evaluation unit (EU) then determines the amount of target particles (1) in a first zone (Z1) immediately at the contracts surface (112) and a second zone (Z2) a distance (z) away from the contact surface based on this sensor-signal. In an optical measurement approach, frustrated total internal reflection taking place under different operating conditions (e.g. wavelength, angle of incidence) may be used to extract information about the first and second zones (Z1, Z2). In a magnetic measurement approach, different magnetic excitation fields may be used to excite magnetic target particles differently in the first and second zone (Z2). Moreover, the temporal course of a sensor-signal (s, s′) can be evaluated, particularly with respect to stochastic movements of the target particles (1).
摘要:
The invention relates to a microelectronic device (200), particularly a magnetic biosensor, comprising B/E-electrodes (21) that can generate a magnetic field (B) in a sample chamber (10). The device further comprises E-electrodes (23, 24) that can generate an electrical field (E) in the sample chamber (10) in cooperation with the B/E-electrodes (21). Thus the B/E-electrodes are used for two purposes. Electrical fields (E) in the sample chamber (10) may particularly be used for pumping and/or mixing of a fluid sample or for a stringency test of particle bindings.
摘要:
The invention relates to a magnetic sensor device (10) comprising wires (11, 13) for the generation of a magnetic field and a magnetic sensor element (12), for example a GMR (12), for sensing changes of the generated magnetic field caused by magnetic particles (2). The wires (11, 13) and the magnetic sensor element (12) are supplied with alternating currents (I1, I2) of high frequencies f1 and f2. Said frequencies are chosen such that their difference Δf=æf2−f1æ is low and lies in a range of thermal white noise above the 1/f noise of an amplifier (24) and below the 1/f noise of the GMR (12). In this way it is possible to use a high-frequency magnetic field while only low frequency signals have to be processed.