摘要:
A method and system for overriding state information programmed into a processor using an application programming interface (API) avoids introducing error conditions in the processor. An override monitor unit within the processor stores the programmed state for any setting that is overridden so that the programmed state can be restored when the error condition no longer exists. The override monitor unit overrides the programmed state by forcing the setting to a legal value that does not cause an error condition. The processor is able to continue operating without notifying a device driver that an error condition has occurred since the error condition is avoided.
摘要:
A method and system for overriding state information programmed into a processor using an application programming interface (API) avoids introducing error conditions in the processor. An override monitor unit within the processor stores the programmed state for any setting that is overridden so that the programmed state can be restored when the error condition no longer exists. The override monitor unit overrides the programmed state by forcing the setting to a legal value that does not cause an error condition. The processor is able to continue operating without notifying a device driver that an error condition has occurred since the error condition is avoided.
摘要:
A method and system for overriding state information programmed into a processor using an application programming interface (API) avoids introducing error conditions in the processor. An override monitor unit within the processor stores the programmed state for any setting that is overridden so that the programmed state can be restored when the error condition no longer exists. The override monitor unit overrides the programmed state by forcing the setting to a legal value that does not cause an error condition. The processor is able to continue operating without notifying a device driver that an error condition has occurred since the error condition is avoided.
摘要:
A system and method for tracking and reporting texture map levels of detail that are computed during graphics processing allows for efficient management of texture map storage. Minimum and/or maximum pre-clamped texture map levels of detail values are tracked by a graphics processor and an array stored in memory is updated to report the minimum and/or maximum values for use by an application program. The minimum and/or maximum values may be used to determine the active set of texture map levels of detail that is loaded into graphics memory.
摘要:
A method and system for overriding state information programmed into a processor using an application programming interface (API) avoids introducing error conditions in the processor. An override monitor unit within the processor stores the programmed state for any setting that is overridden so that the programmed state can be restored when the error condition no longer exists. The override monitor unit overrides the programmed state by forcing the setting to a legal value that does not cause an error condition. The processor is able to continue operating without notifying a device driver that an error condition has occurred since the error condition is avoided.
摘要:
A technique for handling floating-point special values, e.g., Infinity, NaN, −Zero, and denorms, during blend operations is provided so that blend operations on fragment color values that contain special values can be performed in compliance with special value handling rules. In particular, the presence of special values is detected or the potential presence of special values is detected. This information is used to qualify when blend optimizations may be performed, so that floating point blend operations can remain conformant to special value handling rules.
摘要:
A system, method and computer program product are provided for bump mapping in a hardware graphics processor. Initially, a first set of texture coordinates is received. The texture coordinates are then multiplied by a matrix to generate results. A second set of texture coordinates is then offset utilizing the results. The offset second set of texture coordinates is then mapped to color.
摘要:
A system, method and article of manufacture are provided for programmable processing in a computer graphics pipeline. Initially, data is received from a source buffer. Thereafter, programmable operations are performed on the data in order to generate output. The operations are programmable in that a user may utilize instructions from a predetermined instruction set for generating the same. Such output is stored in a register. During operation, the output stored in the register is used in performing the programmable operations on the data.
摘要:
The present invention provides alignment and ordering of vector elements for SIMD processing. In the alignment of vector elements for SIMD processing, one vector is loaded from a memory unit into a first register and another vector is loaded from the memory unit into a second register. The first vector contains a first byte of an aligned vector to be generated. Then, a starting byte specifying the first byte of an aligned vector is determined. Next, a vector is extracted from the first register and the second register beginning from the first bit in the first byte of the first register continuing through the bits in the second register. Finally, the extracted vector is replicated into a third register such that the third register contains a plurality of elements aligned for SIMD processing. In the ordering of vector elements for SIMD processing, a first vector is loaded from a memory unit into a first register and a second vector is loaded from the memory unit into a second register. Then, a subset of elements are selected from the first register and the second register. The elements from the subset are then replicated into the elements in the third register in a particular order suitable for subsequent SIMD vector processing.
摘要:
Systems and methods for addressing memory using non-power-of-two virtual memory page sizes improve graphics memory bandwidth by distributing graphics data for efficient access during rendering. Various partition strides may be selected for each virtual memory page to modify the number of sequential addresses mapped to each physical memory partition and change the interleaving granularity. The addressing scheme allows for modification of a bank interleave pattern for each virtual memory page to reduce bank conflicts and improve memory bandwidth utilization. The addressing scheme also allows for modification of a partition interleave pattern for each virtual memory page to distribute accesses amongst multiple partitions and improve memory bandwidth utilization.