摘要:
Noven B.t. genes encoding toxins active against nematode pests have been cloned. The DNA encoding the B.t. toxin can be used to transform various hosts to express the B.t. toxin.
摘要:
Methods and compositions for the control of pests of the family Calliphoridae are described. Specifically, Bacillus thuringiensis (B.t.) isolates having anti-calliphorid activity are disclosed. Also described are recombinant hosts which express B.t. genes coding for pesticidal toxins. The B.t. isolates and recombinant proteins are shown to be useful in a method for controlling calliphorids including screw-worms and the sheep blowfly.
摘要:
Novel B.t. genes encoding toxins active against nematode pests have been cloned. The DNA encoding the B.t. toxin can be used to transform various hosts to express the B.t. toxin.
摘要:
Novel Bacillus thuringiensis genes encoding toxins which are active against lepidopteran insects have been cloned from novel lepidopteran-active B. thuringiensis microbes. The DNA encoding the B. thuringiensis toxins can be used to transform various prokaryotic and eukaryotic microbes to express the B. thuringiensis toxins. These recombinant microbes can be used to control lepidopteran insects in various environments.
摘要:
A novel B.t. toxin gene toxic to lepidopteran insects has been cloned from a novel lepidopteran-active B. thuringiensis microbe. The DNA encoding the B.t. toxin can be used to transform various prokaryotic and eukaryotic microbes to express the B.t. toxin. These recombinant microbes can be used to control lepidopteran insects in various environments.
摘要:
Novel Bacillus thuringiensis genes encoding toxins which are active against lepidopteran insects have been cloned from novel lepidopteran-active B. thuringiensis microbes. The DNA encoding the B. thuringiensis toxins can be used to transform various prokaryotic and eukaryotic microbes to express the B. thuringiensis toxins. These recombinant microbes can be used to control lepidopteran insects in various environments.
摘要:
Disclosed and claimed are novel Bacillus thuringiensis isolates which have lepidopteran activity. Thus, these isolates, or mutants thereof, can be used to control such insect pests. Further, genes encoding novel .delta.-endotoxins can be removed from the isolates and transferred to other host microbes, or plants. Expression of the .delta.-endotoxins in such hosts results in the control of susceptible insect pests in the environment of such hosts.
摘要:
Disclosed and claimed are toxins produced by novel Bacillus thuringiensis insolates designated B.t. PS92J, B.t. PS196S1, B.t. PS201L1; and B.t. PS201T6, which have dipteran and/or corn rootworm activity. Thus, the insolates, or mutants thereof, can be used to control such pests. Further, claimed are novel genes encoding these .delta.-emdotoxins, which can be expressed in other hosts, Expression of the .delta.-endotoxins in such hosts results in the control of susceptible insect pests in the environment of such hosts.
摘要:
This invention concerns genes or gene fragments which have been cloned from novel Bacillus thuringiensis isolates which have nematicidal activity. These genes or gene fragments can be used to transform suitable hosts for controlling nematodes.
摘要:
Disclosed and claimed are novel Bacillus thuringiensis isolates which have lepidopteran activity. Thus, these isolates, or mutants thereof, can be used to control such insect pests. Further, genes encoding novel .delta.-endotoxins can be removed from the isolates and transferred to other host microbes, or plants. Expression of the .delta.-endotoxins in such hosts results in the control of susceptible insect pests in the environment of such hosts.