摘要:
A white light generating organic electroluminescent device including an organic light emitting diode emitting a broad spectrum light including a component of each primary color. A multi-mode microcavity structure is positioned to cooperate with the diode defining an optical length of the microcavity structure to enhance the broad spectrum light and obtain multiple resonant peaks, one at each primary color. A plurality of filters are positioned to receive and adjust the multiple resonant peaks to provide substantially balanced multiple resonant peaks.
摘要:
A MEMS device and method of making same is disclosed. In one embodiment, a micro-switch includes a base assembly comprising a movable structure bearing a contact pad. The base assembly is wafer-scale bonded to a lid assembly comprising an activator and a signal path. The movable structure moves within a sealed cavity formed during the bonding process. The signal path includes an input line and an output line separated by a gap, which prevents signals from propagating through the micro-switch when the switch is deactivated. In operation, a signal is launched into the signal path. When the micro-switch is activated, a force is established by the actuator, which pulls a portion of the movable structure upwards towards the gap in the signal path, until the contact pad bridges the gap between the input line and output line, allowing the signal to propagate through the micro-switch. Prior to bonding, the MEMS structures are annealed on a first wafer and the conductive traces and other metals are annealed on a second wafer to allow each wafer to be processed separately using different processes, e.g., different annealing temperatures.
摘要:
A micro electro-mechanical systems device having variable capacitance is controllable over the full dynamic range and not subject to the “snap effect” common in the prior art. The device features an electrostatic driver (120) having a driver capacitor of fixed capacitance (121) in series with a second driver capacitor of variable capacitance (126). A MEMS variable capacitor (130) is controlled by applying an actuation voltage potential to the electrostatic driver (120). The electrostatic driver (120) and MEMS variable capacitor (130) are integrated in a single, monolithic device.
摘要:
A MEMS device and method of making same is disclosed. In one embodiment, a micro-switch includes a base assembly comprising a movable structure bearing a contact pad. The base assembly is wafer-scale bonded to a lid assembly comprising an activator and a signal path. The movable structure moves within a sealed cavity formed during the bonding process. The signal path includes an input line and an output line separated by a gap, which prevents signals from propagating through the micro-switch when the switch is deactivated. In operation, a signal is launched into the signal path. When the micro-switch is activated, a force is established by the actuator, which pulls a portion of the movable structure upwards towards the gap in the signal path, until the contact pad bridges the gap between the input line and output line, allowing the signal to propagate through the micro-switch.
摘要:
A micro electro-mechanical systems device having variable capacitance is controllable over the full dynamic range and not subject to the “snap effect” common in the prior art. The device features an electrostatic driver (120) having a driver capacitor of fixed capacitance (121) in series with a second driver capacitor of variable capacitance (126). A MEMS variable capacitor (130) is controlled by applying an actuation voltage potential to the electrostatic driver (120). The electrostatic driver (120) and MEMS variable capacitor (130) are integrated in a single, monolithic device.
摘要:
A Micro-Electromechanical System (MEMS) switch (100) having a single, center hinge (120) which supports a membrane-type electrode (104) on a substrate (101). The single, center hinge (120) has a control electrode (104) coupled to the substrate (101) by an anchor (113), a hinge collar (121), a set of hinge arms (122, 123). The control electrode (104) has a shorting bar (106) coupled thereto and is electrically isolated from another control electrode (105), which is formed on the substrate (101). A travel stop (130) is positioned between the substrate and the control electrode (104). Another aspect of the present invention is a Single Pole, Double Throw (SPDT) switch (160) into which is incorporated the single, center hinge (170) and the travel stop (185, 186).
摘要:
A Micro-Electromechanical Systems (MEMS) device (100) having conductively filled vias (141). A MEMS component (124) is formed on a substrate (110). The substrate has conductively filled vias (140) extending therethrough. The MEMS component (124) is electrically coupled to the conductively filled vias (140). The MEMS component (124) is covered by a protective cap (150). An electrical interconnect (130) is formed on a bottom surface of the substrate (110) for transmission of electrical signals to the MEMS component (124), rather than using wirebonds.
摘要:
A method of purifying a primary color including providing an organic light emitting diode having a diode light output with a broad spectrum that includes a fraction of the primary color. A microcavity structure is formed in cooperation with the organic light emitting diode to define an optical length of the microcavity structure, and the optical length of the microcavity structure being such that light emitted from the microcavity structure is the primary color, purified.
摘要:
Light emitting apparatus comprising a thin film transistor having a current carrying terminal, an organic electroluminescent device for emitting light having a broad spectrum and having a first terminal connected to current carrying terminal, a color converting medium for absorbing light coupled thereto and emitting light in response to absorbed light, and a microcavity coupling emitted light from the organic electroluminescent device to the color converting medium.
摘要:
A MEMS device and method of making same is disclosed. In one embodiment, a micro-switch includes a base assembly comprising a movable structure bearing a contact pad. The base assembly is wafer-scale bonded to a lid assembly comprising an activator and a signal path. The movable structure moves within a sealed cavity formed during the bonding process. The signal path includes an input line and an output line separated by a gap, which prevents signals from propagating through the micro-switch when the switch is deactivated. In operation, a signal is launched into the signal path. When the micro-switch is activated, a force is established by the actuator, which pulls a portion of the movable structure upwards towards the gap in the signal path, until the contact pad bridges the gap between the input line and output line, allowing the signal to propagate through the micro-switch.