Abstract:
A system and method for corrosion problems in magnetic media resulting from moisture penetrating through the carbon layer into the magnetic layer by diffusion or other methods are overcome by processing the carbon overcoat to stop and/or inhibit the moisture penetration. The process involves removing moisture channels from protective overcoats of thin film magnetic media by irradiating the protective overcoat with ultraviolet (UV) radiation in an inert hydrophobic chemical environment. Afterwards, the thin film magnetic media can be removed into ambient atmosphere where it is coated with a lubricant.
Abstract:
A system and method for corrosion problems in magnetic media resulting from moisture penetrating through the carbon layer into the magnetic layer by diffusion or other methods are overcome by processing the carbon overcoat to stop and/or inhibit the moisture penetration. The process involves removing moisture channels from protective overcoats of thin film magnetic media by irradiating the protective overcoat with ultraviolet (UV) radiation in an inert hydrophobic chemical environment. Afterwards, the thin film magnetic media can be removed into ambient atmosphere where it is coated with a lubricant.
Abstract:
Disclosed is a method of increasing the efficiency of ultra-violet (UV) curing of a lubricant thin film utilized as a topcoat layer of a data/information storage medium, comprising irradiating the lubricant thin film with UV radiation of a wavelength corresponding to a wavelength of maximum absorption of UV radiation by the lubricant thin film. Also disclosed are data/information storage media, e.g., magnetic or MO disks, comprising the UV-cured lubricant thin films as topcoat layers.
Abstract:
A system and method for corrosion problems in magnetic media resulting from moisture penetrating through the carbon layer into the magnetic layer by diffusion or other methods are overcome by processing the carbon overcoat to stop and/or inhibit the moisture penetration. The process involves removing moisture channels from protective overcoats of thin film magnetic media by irradiating the protective overcoat with ultraviolet (UV) radiation in an inert hydrophobic chemical environment. Afterwards, the thin film magnetic media can be removed into ambient atmosphere where it is coated with a lubricant.
Abstract:
A method for patterning a carbon-containing substrate utilizing a patterned layer of a resist material as a mask and then safely removing the mask from the substrate without adversely affecting the substrate, comprising sequential steps of: (a) providing a substrate including a surface comprising carbon; (b) forming a thin metal layer on the substrate surface; (c) forming a layer of a resist material on the thin metal layer; (d) patterning the layer of resist material; (e) patterning the substrate utilizing the patterned layer of resist material as a pattern-defining mask; and (f) removing the mask utilizing the thin metal layer as a wet strippable layer or a plasma etch/ash stop layer.
Abstract:
A data/information storage and retrieval medium comprises: (a) a substrate having a layer stack thereon, the layer stack including an outer surface and comprising at least one magnetic or magneto-optical (“MO”) recording layer; and (b) a thin film or layer of a lubricant on the outer surface of the layer stack and comprised of a derivatized perfluoropolyether-based material including at least one generally linear perfluoropolyether chain and at least one phosphite antioxidant/stabilizer moiety attached to at least one end of at least one the chain.
Abstract:
Thin lubricant films are prepared on optical and magnetic substrates by applying a lubricant having at least one UV polymerizable group onto the substrate and polymerizing the lubricant by UV irradiation at elevated temperatures. Embodiments include applying a lubricant having at least two acrylate groups onto a magnetic recording disc, heating the magnetic recording disc from about 50° C. to about 150° C. and exposing the lubricant to UV radiation substantially free of wavelengths of 200 nm or less.
Abstract:
A magnetic recording medium having a lubricant film containing a non-phase separated additive and a lubricant a base layer, wherein the additive is bonded to the base layer, for better and faster mobility of a lubricant to ensure rapid healing of areas of the medium that have been depleted of the lubricant, and a method of manufacturing thereof, is disclosed.
Abstract:
A perfluoropolyether hard disk lubricant having a UV curable functional end group that may be UV cured at a rapid rate with a Xenon excimer lamp. The perfluoropolyether preferably has at least one UV curable functional end group. In one embodiment, the UV curable end group comprises an acrylate.
Abstract:
A system having a deposition chamber comprising a xenon excimer lamp and an inlet for deposition of a lubricant into the deposition chamber, wherein the deposition chamber has an ability to perform both a vapor deposition of the lubricant and an in-situ UV exposure of the lubricant is disclosed. Also, a method including depositing a lubricant on a magnetic recording medium in a deposition chamber and in-situ UV exposing of the lubricant to irradiation from a xenon excimer lamp is disclosed.