摘要:
This invention relates to the composition, method of making and use of a fluidized catalytic cracking (“FCC”) catalyst that is comprised of a new Y zeolite which exhibits an exceptionally low small mesoporous peak around the 40 Å (angstrom) range as determined by nitrogen adsorption measurements. FCC catalysts made from this new zeolite exhibit improved rates of heavy oil cracking heavy oil bottoms conversions and gasoline conversions. The fluidized catalytic cracking catalysts herein are particularly useful in fluidized catalytic cracking (“FCC”) processes for conversion of heavy hydrocarbon feedstocks such as gas oils and vacuum tower bottoms.
摘要:
This invention relates to the composition, method of making and use of a fluidized catalytic cracking (“FCC”) catalyst that is comprised of a new Y zeolite which exhibits an exceptionally low small mesoporous peak around the 40 Å (angstrom) range as determined by nitrogen adsorption measurements. FCC catalysts made from this new zeolite exhibit improved rates of heavy oil cracking heavy oil bottoms conversions and gasoline conversions. The fluidized catalytic cracking catalysts herein are particularly useful in fluidized catalytic cracking (“FCC”) processes for conversion of heavy hydrocarbon feedstocks such as gas oils and vacuum tower bottoms.
摘要:
This invention relates to the composition, method of making and use of a fluidized catalytic cracking (“FCC”) catalyst that is comprised of a new Y zeolite which exhibits an exceptionally low small mesoporous peak around the 40 Å (angstrom) range as determined by nitrogen adsorption measurements. FCC catalysts made from this new zeolite exhibit improved rates of heavy oil cracking heavy oil bottoms conversions and gasoline conversions. The fluidized catalytic cracking catalysts herein are particularly useful in fluidized catalytic cracking (“FCC”) processes for conversion of heavy hydrocarbon feedstocks such as gas oils and vacuum tower bottoms.
摘要:
A catalytic cracking catalyst composition is disclosed that is suitable for reducing the sulfur content of catalytically cracking liquid products, in particularly gasoline products, produced during a catalytic cracking process. Preferably, the catalytic cracking process is a fluidized catalytic cracking (FCC) process. The composition comprises zeolite, zinc and at least one rare earth element having an ionic radius of less than 0.95 Å at a coordination number of 6. Preferably, zinc and the rare earth element are present as cations that have been exchanged on the zeolite. The zeolite is preferably a Y-type zeolite.
摘要:
The invention is a composition that is suitable for reducing sulfur species from products produced by petroleum refining processes, especially gasoline products produced by fluidized catalytic cracking (FCC) processes. The composition comprises zeolite, yttrium, and at least one element selected from the group consisting of zinc, magnesium and manganese, wherein the yttrium and element are present as cations. The yttrium and zinc are preferably present as cations that have been exchanged onto the zeolite. The zeolite is preferably a zeolite Y.
摘要:
The invention is a composition that is suitable for reducing sulfur species from products produced by petroleum refining processes, especially gasoline products produced by fluidized catalytic cracking (FCC) processes. The composition comprises zeolite, yttrium, and at least one element selected from the group consisting of zinc, magnesium and manganese, wherein the yttrium and element are present as cations. The yttrium and zinc are preferably present as cations that have been exchanged onto the zeolite. The zeolite is preferably a zeolite Y.
摘要:
The present invention is directed to certain catalyst compositions and processes that are capable of reducing sulfur compounds normally found as part of the gasoline fraction streams of fluid catalytic cracking processes. The present invention is a cracking catalyst composition comprising a zeolite in combination with a Lewis Acid containing component, wherein the cracking catalyst composition comprises 0.2% Na2O or less. It has been found that sulfur compounds in hydrocarbon feeds to fluid catalytic cracking processes can be reduced by at least 15% compared to the same composition, which does not comprise the aforementioned Lewis Acid containing component.
摘要:
The invention is a composition that is suitable for reducing sulfur species from products produced by petroleum refining processes, especially gasoline products produced by fluidized catalytic cracking (FCC) processes. The composition comprises zeolite, yttrium, and at least one element selected from the group consisting of zinc, magnesium and manganese, wherein the yttrium and element are present as cations. The yttrium and zinc are preferably present as cations that have been exchanged onto the zeolite. The zeolite is preferably a zeolite Y.
摘要:
A particulate catalytic cracking catalyst which comprises a zeolite having catalytic cracking ability under catalytic cracking conditions, added silica, precipitated alumina and, optionally clay. The catalytic cracking catalyst has a high matrix surface area and is useful in a catalytic cracking process, in particularly, a fluid catalytic cracking process, to improve bottoms conversion at a constant coke formation.
摘要:
A catalytic cracking catalyst composition is disclosed that is suitable for reducing the sulfur content of catalytically cracking liquid products, in particularly gasoline products, produced during a catalytic cracking process. Preferably, the catalytic cracking process is a fluidized catalytic cracking (FCC) process. The composition comprises zeolite, zinc and at least one rare earth element having an ionic radii of less than 0.95 Å at a coordination number of 6. Preferably, zinc and the rare earth element are present as cations that have been exchanged on the zeolite. The zeolite is preferably a Y-type zeolite.