摘要:
A method of forming a local interconnect structure is provided. A first barrier layer comprising sputtered titanium nitride is formed over a topographical structure situated upon a field oxide region within a semiconductor substrate. A hard mask layer comprising tungsten silicide is formed over the first barrier layer. A photoresist layer is then formed over the hard mask layer. The hard mask layer is selectively removed from above an adjacent gate stack on the semiconductor substrate using an etch that is selective to the first barrier layer. The first barrier layer is selectively removed using an etch that is selective to the hard mask layer. A silica layer is formed over the hard mask layer. A recess is formed in the silica layer that is aligned with an active area within the semiconductor substrate. The recess is filled with an electrically conductive material. A second method of forming a local interconnect structure is provided comprising forming a first barrier layer comprising sputter titanium nitride over a semiconductor substrate having a topographical structure situated upon a field oxide region within the semiconductor substrate. A first electrically conductive layer comprising tungsten is then formed over the first barrier layer using chemical vapor deposition. The first electrically conductive layer provides good step coverage over the topographical structure. A second barrier layer comprising sputtered titanium nitride is formed over the first electrically conductive layer. A hard mask layer comprising polysilicon or silica is then formed over the second barrier layer. The hard mask is selectively removed from above an adjacent gate stack on the semiconductor substrate with an etch that is selective to the second barrier layer. The second barrier layer, the first conductive layer, and the first barrier layer are selectively removed, thereby exposing the underlying gate stack on the semiconductor substrate using a chemical etch selective to the hard mask layer. A silica layer is then formed with a recess therein that is filled with an electrically conductive material to form an active area contact through the local interconnect structure.
摘要:
A method of forming a local interconnect structure is provided. A first barrier layer comprising sputtered titanium nitride is formed over a topographical structure situated upon a field oxide region within a semiconductor substrate. A hard mask layer comprising tungsten silicide is formed over the first barrier layer. A photoresist layer is then formed over the hard mask layer. The hard mask layer is selectively removed from above an adjacent gate stack on the semiconductor substrate using an etch that is selective to the first barrier layer. The first barrier layer is selectively removed using an etch that is selective to the hard mask layer. A silica layer is formed over the hard mask layer. A recess is formed in the silica layer that is aligned with an active area within the semiconductor substrate. The recess is filled with an electrically conductive material. A second method of forming a local interconnect structure is provided comprising forming a first barrier layer comprising sputter titanium nitride over a semiconductor substrate having a topographical structure situated upon a field oxide region within the semiconductor substrate. A first electrically conductive layer comprising tungsten is then formed over the first barrier layer using chemical vapor deposition. The first electrically conductive layer provides good step coverage over the topographical structure. A second barrier layer comprising sputtered titanium nitride is formed over the first electrically conductive layer. A hard mask layer comprising polysilicon or silica is then formed over the second barrier layer. The hard mask is selectively removed from above an adjacent gate stack on the semiconductor substrate with an etch that is selective to the second barrier layer. The second barrier layer, the first conductive layer, and the first barrier layer are selectively removed, thereby exposing the underlying gate stack on the semiconductor substrate using a chemical etch selective to the hard mask layer. A silica layer is then formed with a recess therein that is filled with an electrically conductive material to form an active area contact through the local interconnect structure.
摘要:
A method of forming a local interconnect structure is provided. A first barrier layer comprising sputtered titanium nitride is formed over a topographical structure situated upon a field oxide region within a semiconductor substrate. A hard mask layer comprising tungsten silicide is formed over the first barrier layer. A photoresist layer is then formed over the hard mask layer. The hard mask layer is selectively removed from above an adjacent gate stack on the semiconductor substrate using an etch that is selective to the first barrier layer. The first barrier layer is selectively removed using an etch that is selective to the hard mask layer. A silica layer is formed over the hard mask layer. A recess is formed in the silica layer that is aligned with an active area within the semiconductor substrate. The recess is filled with an electrically conductive material. A second method of forming a local interconnect structure is provided comprising forming a first barrier layer comprising sputter titanium nitride over a semiconductor substrate having a topographical structure situated upon a field oxide region within the semiconductor substrate. A first electrically conductive layer comprising tungsten is then formed over the first barrier layer using chemical vapor deposition. The first electrically conductive layer provides good step coverage over the topographical structure. A second barrier layer comprising sputtered titanium nitride is formed over the first electrically conductive layer. A hard mask layer comprising polysilicon or silica is then formed over the second barrier laster. The hard mask is selectively removed from above an adjacent gate stack on the semiconductor substrate with an etch that is selective to the second barrier layer. The second barrier layer, the first conductive layer, and the first barrier layer are selectively removed, thereby exposing the underlying gate stack on the semiconductor substrate using a chemical etch selective to the hard mask layer. A silica layer is then formed with a recess therein that is filled with an electrically conductive material to form an active area contact through the local interconnect structure.
摘要:
A method of forming a local interconnect structure is provided. A first barrier layer comprising sputtered titanium nitride is formed over a topographical structure situated upon a field oxide region within a semiconductor substrate. A hard mask layer comprising tungsten silicide is formed over the first barrier layer. A photoresist layer is then formed over the hard mask layer. The hard mask layer is selectively removed from above an adjacent gate stack on the semiconductor substrate using an etch that is selective to the first barrier layer. The first barrier layer is selectively removed using an etch that is selective to the hard mask layer. A silica layer is formed over the hard mask layer. A recess is formed in the silica layer that is aligned with an active area within the semiconductor substrate. The recess is filled with an electrically conductive material. A second method of forming a local interconnect structure is provided comprising forming a first barrier layer comprising sputter titanium nitride over a semiconductor substrate having a topographical structure situated upon a field oxide region within the semiconductor substrate. A first electrically conductive layer comprising tungsten is then formed over the first barrier layer using chemical vapor deposition. The first electrically conductive layer provides good step coverage over the topographical structure. A second barrier layer comprising sputtered titanium nitride is formed over the first electrically conductive layer. A hard mask layer comprising polysilicon or silica is then formed over the second barrier layer. The hard mask is selectively removed from above an adjacent gate stack on the semiconductor substrate with an etch that is selective to the second barrier layer. The second barrier layer, the first conductive layer, and the first barrier layer are selectively removed, thereby exposing the underlying gate stack on the semiconductor substrate using a chemical etch selective to the hard mask layer. A silica layer is then formed with a recess therein that is filled with an electrically conductive material to form an active area contact through the local interconnect structure.
摘要:
Semiconductor memory devices having recessed access devices are disclosed. In some embodiments, a method of forming the recessed access device includes forming a device recess in a substrate material that extends to a first depth in the substrate that includes a gate oxide layer in the recess. The device recess may be extended to a second depth that is greater that the first depth to form an extended portion of the device recess. A field oxide layer may be provided within an interior of the device recess that extends inwardly into the interior of the device recess and into the substrate. Active regions may be formed in the substrate that abut the field oxide layer, and a gate material may be deposited into the device recess.
摘要:
Semiconductor memory devices having recessed access devices are disclosed. In some embodiments, a method of forming the recessed access device includes forming a device recess in a substrate material that extends to a first depth in the substrate that includes a gate oxide layer in the recess. The device recess may be extended to a second depth that is greater that the first depth to form an extended portion of the device recess. A field oxide layer may be provided within an interior of the device recess that extends inwardly into the interior of the device recess and into the substrate. Active regions may be formed in the substrate that abut the field oxide layer, and a gate material may be deposited into the device recess.
摘要:
Semiconductor memory devices having recessed access devices are disclosed. In some embodiments, a method of forming the recessed access device includes forming a device recess in a substrate material that extends to a first depth in the substrate that includes a gate oxide layer in the recess. The device recess may be extended to a second depth that is greater that the first depth to form an extended portion of the device recess. A field oxide layer may be provided within an interior of the device recess that extends inwardly into the interior of the device recess and into the substrate. Active regions may be formed in the substrate that abut the field oxide layer, and a gate material may be deposited into the device recess.
摘要:
A method of depositing dielectric material into sub-micron spaces and resultant structures is provided. After a trench is etched in the surface of a wafer, an oxygen barrier is deposited into the trench. An expandable, oxidizable liner, preferably amorphous silicon, is then deposited. The trench is then filled with a spin-on dielectric (SOD) material. A densification process is then applied, whereby the SOD material contracts and the oxidizable liner expands. Preferably, the temperature is ramped up while oxidizing during at least part of the densification process. The resulting trench has a negligible vertical wet etch rate gradient and a negligible recess at the top of the trench.
摘要:
A method of forming capacitorless DRAM over localized silicon-on-insulator comprises the following steps: A silicon substrate is provided, and an array of silicon studs is defined within the silicon substrate. An insulator layer is defined atop at least a portion of the silicon substrate, and between the silicon studs. A silicon-over-insulator layer is defined surrounding the silicon studs atop the insulator layer, and a capacitorless DRAM is formed within and above the silicon-over-insulator layer.
摘要:
The invention includes methods of forming recessed access devices. A substrate is provided to have recessed access device trenches therein. A pair of the recessed access device trenches are adjacent one another. Electrically conductive material is formed within the recessed access device trenches, and source/drain regions are formed proximate the electrically conductive material. The electrically conductive material and source/drain regions together are incorporated into a pair of adjacent recessed access devices. After the recessed access device trenches are formed within the substrate, an isolation region trench is formed between the adjacent recessed access devices and filled with electrically insulative material to form a trenched isolation region.