Abstract:
A noise-suppression circuit (10) divides the signal from a microphone (12) into a plurality of frequency sub-bands by means of a noise-band divider (18) and a subtraction circuit (36). By means of gain circuits (32) and (34), it applies separate gains to the separate bands and then recombines them in a signal combiner (38) to generate an output signal in which the noise has been suppressed. Separate gains are applied only to the lower subbands in the voice spectrum. Accordingly, the noise-band divider (18) is required to compute spectral components for only those bands. By employing a sliding-discrete-Fourier-transform method, the noise-band divider (18) computes the spectral components on a sample-by-sample basis, and circuitry (50, 52) for determining the individual gains can therefore update them on a sample-by-sample basis, too.
Abstract:
A generator includes a first member, a second member and a sliding mechanism. The first member includes a first electrode and a first dielectric layer affixed to the first electrode. The first dielectric layer includes a first material that has a first rating on a triboelectric series. The second member includes a second material that has a second rating on the triboelectric series that is different from the first rating. The second member includes a second electrode. The second member is disposed adjacent to the first dielectric layer so that the first dielectric layer is disposed between the first electrode and the second electrode. The sliding mechanism is configured to cause relative movement between the first member and the second member, thereby generating an electric potential imbalance between the first electrode and the second electrode.
Abstract:
Electronic device assemblies and methods including an organic substrate based space transformer are described. One assembly includes a space transformer comprising an organic substrate. The assembly also includes a carrier on which the space transformer is positioned, and a clamp positioned to couple the space transformer to the carrier. The assembly also includes a probe array positioned on the space transformer, wherein the space transformer is positioned between the probe array and the carrier. The assembly also includes a printed circuit board, wherein the carrier is positioned between the printed circuit board and the space transformer. The assembly also includes electrical connections to electrically couple the space transformer to the printed circuit board. Other embodiments are described and claimed.
Abstract:
A generator includes a first member, a second member and a sliding mechanism. The first member includes a first electrode and a first dielectric layer affixed to the first electrode. The first dielectric layer includes a first material that has a first rating on a triboelectric series. The second member includes a second material that has a second rating on the triboelectric series that is different from the first rating. The second member includes a second electrode. The second member is disposed adjacent to the first dielectric layer so that the first dielectric layer is disposed between the first electrode and the second electrode. The sliding mechanism is configured to cause relative movement between the first member and the second member, thereby generating an electric potential imbalance between the first electrode and the second electrode.
Abstract:
The present invention discloses a transmission method and system for a Relay Physical Downlink Control Channel (R-PDCCH). The method comprises the steps of: an eNB bearing downlink grant information of a relay node onto an available Orthogonal Frequency Division Multiplex (OFDM) symbol of a first slot of a pre-allocated Physical Resource Block (PRB) pair used for bearing the R-PDCCH, wherein available OFDM symbols in the PRB pair, other than the OFDM symbol used for the downlink grant information, are used for bearing a Physical Downlink Shared Channel (PDSCH) of each relay node; the eNB transmitting the PRB pair bearing the downlink grant information and the PDSCH to the relay node. The present invention is well applicable to a link between an eNB and a relay node, and meanwhile enables backhaul resources to be used adequately.
Abstract:
A method and a device for detecting downlink control information. The method includes: a Relay Node (RN) receiving control information born in a Relay Physical Downlink Control Channel (R-PDCCH) sent by an evolved Node B (eNB) to acquire a control resource; the RN performing detection on the control resource according to an index of the control resource to acquire own control information; wherein the control resource is a Relay Control Channel Element (R-CCE) or a Physical Resource Block (PRB). System overhead can be saved and system transmission efficiency can be improved.
Abstract:
The present invention discloses a method for indicating and determining relay link boundary and a base station thereof, wherein, the method for indicating relay link boundary includes: the base station indicates the relay link boundary where the relay node is located to the relay node; the relay node determines the relay link boundary according to the indication of the base station. Through the present invention, the utilization rate of the relay link resource can be improved.
Abstract:
A method and system for transmitting a relay link control channel are disclosed for realizing the mapping and transmission of a control channel on a link from an eNode-B to a relay node. In the present invention, in a frequency division multiplex mode, control information is carried by one or more resource blocks in the frequency direction and the universal set of OFDM symbols available to a relay link in a subframe in the time direction; in a time division and frequency division multiplex mode, control information is carried by one or more resource blocks in the frequency direction and a subset of OFDM symbols available to a relay link in a subframe in the time direction; in a time division multiplex mode, control information is carried by all the resource blocks in the frequency direction and a subset of OFDM symbols available to a relay link in a subframe in the time direction; and the mapping of the control channel includes mapping in the time direction and/or the frequency direction. The present invention has backward compatibility and can obtain frequency diversity again. The time division multiplex mode can save power consumption, and the frequency division multiplex mode and the time division and frequency division multiplex mode have the advantages of flexible service scheduling.
Abstract:
A device receives, from a user device, a request to access a network, determines whether to accept or deny the request to access the network, and monitors traffic provided to or from the user device via the network. The device also determines a traffic pattern for the user device based on the traffic, classifies the traffic as one of high throughput traffic, low packet data size traffic, or high frequency packet interval traffic, and applies different network resource control mechanisms to different classifications of the traffic.