Abstract:
A column select signal generation circuit includes: a first current controller configured to control the level of a pre-column select signal in response to a bank active signal, a driver configured to generate an amplified column select signal in response to the pre-column select signal, and a second current controller configured to generate an output signal of the driver as a column select signal in response to the bank active signal.
Abstract:
An anti-fuse circuit includes: an anti-fuse unit including an anti-fuse capable of being programmed in response to a rupture signal and configured to generate a fuse signal corresponding to a state of the anti-fuse; a dummy fuse unit including a dummy fuse and configured to generate a dummy fuse signal corresponding to a state of the dummy fuse; and a blocking unit configured to output the fuse signal as a fuse output signal in response to a state of the dummy fuse signal.
Abstract:
A semiconductor memory apparatus including a test circuit configured for generating compressed data by comparing and compressing data stored in a plurality of memory cells inside a memory bank during a first test mode, and configured for outputting the compressed data as test data to an input/output pad through one selected global line during the first test mode, and the test circuit is configured for transmitting the compressed data to a plurality of global lines during a second test mode, combining the compressed data loaded in the respective global lines during the second test mode, and outputting the combination result as the test data to the input/output pad during the second test mode.
Abstract:
An anti-fuse circuit includes: a rupture unit including an anti-fuse programmed in response to an input rupture signal during a program mode, and configured to generate an output rupture signal corresponding to a state of the anti-fuse to output the generated output rupture signal to a transmission node, a voltage clamp unit configured to generate a clamp voltage proportional to an external voltage level to generate the clamp voltage having a constant voltage level when the external voltage level rises to a predetermined level or more, and a fuse signal generation unit configured to reset the transmission node to the clamp voltage at the initial stage of the program mode to generate a fuse signal in response to the voltage level of the transmission node during an output mode.
Abstract:
Disclosed herein is a touch panel 100. The touch panel 100 according to the present invention includes: transparent electrode patterns 120 formed on a surface of a transparent substrate 110 and patterned to have opening portions 125; and a light guide 130 disposed on an outside of the transparent substrate 110, the light guide 130 passing only the lights within a predetermined angle from a vertical direction with respect to the surface of the transparent substrate 110, among the lights incident onto the transparent electrode patterns 120 and the opening portions 125 and the lights reflected from the transparent electrode patterns 120 and the opening portions 125. The present invention selectively passes the lights incident onto the transparent electrode patterns 120 and the opening portions 125 within specific angles by employing the light guide 130, thereby improving the visibility of the touch panel 100.
Abstract:
Provided are nanocomposites and a light emitting device package including the same. The nanocomposites include nanoparticles, and silicon compounds bonded to surfaces of the nanoparticles and expressed by a specific chemical formula. The nanocomposites can be dispersed evenly in various matrices without the nanoparticles being agglutinated.
Abstract:
Disclosed herein is a touch panel 100 including: a transparent electrode 120 formed on one surface of a transparent substrate 110, a protective layer 130 formed at the side surface of the transparent electrode 120 so that its upper end 133 surrounds the edge of one surface of the transparent electrode 120 and its lower end 137 protrudes in the edge direction of the transparent substrate 110, and an electrode wiring 140 that is formed at the side surface of the protective layer 130 so as to surround the lower end 137 of the protective layer 130 protruding in the edge direction of the transparent substrate 110. The protective layer 130 is interposed between the transparent electrode 120 and the electrode wiring 140 to prevent the electromigration (EM).
Abstract:
A data input/output circuit includes a rank selecting section and a data input/output section. The rank selecting section is selectively connected to one of the first and second ranks in response to a chip selection signal, and outputs data to a connected rank or receives data from the connected rank. The data input/output section outputs the data transmitted from the rank selecting section through a data pad to an external device during a read operation, and outputs the data inputted to the data pad to the rank selecting section during a write operation.
Abstract:
Provided is a wavelength conversion plate having excellent luminous efficiency of a wavelength-converted light. The wavelength conversion plate includes a dielectric layer with nano pattern, a metal layer formed inside the nano pattern, and a wavelength conversion layer formed on the metal layer and having quantum dot or phosphor which wavelength-converts an excitation light to generate a wavelength-converted light.
Abstract:
There is provided a quantum dot wavelength converter including a quantum dot, which is optically stable without any change in an emission wavelength and improved in emission capability. The quantum dot wavelength converter includes: a wavelength converting part including a quantum dot wavelength-converting excitation light and generating a wavelength-converted light and a dispersive medium dispersing the quantum dot; and a sealer sealing the wavelength converting part.