摘要:
An energy storage device includes positive and negative electrodes; positive and negative lead wires connected to the positive and negative electrodes, respectively; a separator composed of unit fibers and positioned between the positive and negative electrodes to electrically insulate the positive and negative electrodes from each other; a housing accommodating the positive and negative electrodes and the separator; an electrolyte received in the housing; and positive and negative terminals connected to the positive and negative lead wires, respectively, wherein an electrolyte permeability index of the separator is larger than an electrolyte permeability index of the electrodes, and the unit fibers of the separator are arranged irregularly so that pores formed in the separator have cross sections of polygonal shapes. Using this energy storage device, the electrolyte of electrodes that gives a direct influence on electric capacity is not depleted. Also, stress failure of the separator may be prevented effectively.
摘要:
An energy storage device includes positive and negative electrodes; positive and negative lead wires connected to the positive and negative electrodes, respectively; a separator composed of unit fibers and positioned between the positive and negative electrodes to electrically insulate the positive and negative electrodes from each other; a housing accommodating the positive and negative electrodes and the separator; an electrolyte received in the housing; and positive and negative terminals connected to the positive and negative lead wires, respectively, wherein an electrolyte permeability index of the separator is larger than an electrolyte permeability index of the electrodes, and the unit fibers of the separator are arranged irregularly so that pores formed in the separator have cross sections of polygonal shapes. Using this energy storage device, the electrolyte of electrodes that gives a direct influence on electric capacity is not depleted. Also, stress failure of the separator may be prevented effectively.
摘要:
Disclosed is an energy storage device, in which an electrode material including an aqueous solvent, a binder and a transition metal oxide containing lithium is used to form one electrode, and an electrode material including activated carbon is used to form the other electrode. In particular, the energy storage device ensures reliability and maximum capacitance efficiency by optimizing density and thickness values of the electrode materials for the cathode electrode and the anode electrode.
摘要:
An the electric energy storage device includes a cylindrical rolling up electrode body, a cathode lead connecting plate, an anode lead connecting plate, a terminal plate, and a container. The rolling up electrode body includes a cathode and an anode leads formed by cathode and anode collectors. The cathode and anode leads are separately extended from one side of the rolling up electrode body. The terminal plate includes a cathode lead connecting plate, an anode lead connecting plate and an insulation combing member for integrally combining the cathode lead connecting plate with the anode lead connecting plate. The container receives the rolling up electrode body. The electric energy storage device may be advantageously connected to another electric energy storage device in serial or parallel. Additionally, the electric energy storage device has some advantages such as reduced volume, enhanced convenience, improved productivity, etc.
摘要:
Disclosed are an electric energy storage device having a good cycle characteristic and a temperature characteristic and a method of charging and discharging the electric energy storage device. The electric energy storage device including a capacitor and a secondary battery combined in series is provided. When the capacitor of the electric energy storage device is an electric double layer capacitor, the capacitor is used to the voltage of OV or less to increase an available energy usage.
摘要:
Disclosed are an electric energy storage device having a good cycle characteristic and a temperature characteristic and a method of charging and discharging the electric energy storage device. The electric energy storage device including a capacitor and a secondary battery combined in series is provided. When the capacitor of the electric energy storage device is an electric double layer capacitor, the capacitor is used to the voltage of OV or less to increase an available energy usage. When this energy storage device is used as a power in a place where a rapid keeping and repairing is difficult such as out in the fields including in the mountain, at the sea, on the road, the cost for keeping and repairing can be largely reduced.
摘要:
An electric energy storage system having a novel structure which exhibits a ling cycle life, rapid charging-discharging characteristics and a high energy density. The electric energy storage system comprises: an anode comprised of a first material that performs interalation-deintercalation of cation as an anode active material; a cathode comprised of a second material that may form an electric doublelayer with anion as a cathode active materials; and a electrolyte including lithium salt, the electrolyte including the cation and anion. Due to a high difference between anode and cathode in capacity to store the electric energy, most electrochemical impact that occurs in the process of intercalation-deintercalation of electric energy is absorbed into cathode and active material used for anode is activated carbon having a very high resistance to electrochemical and structural impact, so that its operation life is elongated and it has rapid charging-discharging characteristics. The electric energy storage system can complement the defects of a conventional technology.
摘要:
An electrolyte for a lithium battery includes a non-aqueous organic solvent, a lithium salt, and an additive comprising a) a compound represented by the following Formula (1), and b) a compound selected from the group consisting of a sulfone-based compound, a poly(ester)(metha)acrylate, a polymer of poly(ester)(metha)acrylate, and a mixture thereof: wherein R1 is a C1 to C10 alkyl, a C1 to C10 alkoxy, or a C6 to C10 aryl, and preferably a methyl, ethyl, or methoxy, X is a halogen, and m and n are integers ranging from 1 to 5, where m+n is less than or equal to 6.
摘要:
A nonaqueous electrolytic solution and a lithium battery employing the same include a lithium salt, an organic solvent, and a halogenated benzene compound. The use of the nonaqueous electrolytic solution causes formation of a polymer by oxidative decomposition of the electrolytic solution even if a sharp voltage increase occurs due to overcharging of the battery, leading to consumption of an overcharge current, thus protecting the battery.
摘要:
An electrolyte for a lithium battery includes a non-aqueous organic solvent, a lithium salt, and an additive comprising a) a compound represented by the following Formula (1), and b) a compound selected from the group consisting of a sulfone-based compound, a poly(ester)(metha)acrylate, a polymer of poly(ester)(metha)acrylate, and a mixture thereof: wherein R1 is a C1 to C10 alkyl, a C1 to C10 alkoxy, or a C6 to C10 aryl, and preferably a methyl, ethyl, or methoxy, X is a halogen, and m and n are integers ranging from 1 to 5, where m+n is less than or equal to 6.