摘要:
The embodiments of the invention are directed to a SERS cluster comprising a capture particle that is at least partially surrounded by analyte molecules, wherein both the capture particle and the analyte molecules surrounding the capture particle are at least partially surrounded by enhancer particles, wherein a majority of the analyte molecules are either sandwiched between capture and enhancer particles or located between junctions of the enhancer particles. The embodiments of the invention also relate to methods of manufacturing and detecting the SERS cluster. The embodiments of the invention also relate to a SERS active particle comprising a tag molecule comprising a Raman active compound and a probe or a linker having a specific biochemical binding capability and to a method for detecting of a target molecule using a SERS active particle having a tag molecule comprising a Raman active compound and a probe or a linker.
摘要:
A SERS active particle having a metal-containing particle and a cationic coating on the metal-containing particle, wherein the SERS active particle carries a positive charge is disclosed. Also, a SERS active particle having a metal-containing particle and a non-metallic molecule, wherein the metal-containing particle is derivatized with the non-metallic molecule is disclosed. In addition, several methods of modifying the nanoparticles surfaces of a SERS active particle and of improving the interaction between the SERS active particle and an analyte are disclosed.
摘要:
A SERS active particle having a metal-containing particle and a cationic coating on the metal-containing particle, wherein the SERS active particle carries a positive charge is disclosed. Also, a SERS active particle having a metal-containing particle and a non-metallic molecule, wherein the metal-containing particle is derivatized with the non-metallic molecule is disclosed. In addition, several methods of modifying the nanoparticles surfaces of a SERS active particle and of improving the interaction between the SERS active particle and an analyte are disclosed.
摘要:
Embodiments of the present invention provide devices and methods for detecting, identifying, distinguishing, and quantifying modifications to nucleic acids, proteins, and peptides using SERS and Raman spectroscopy. Applications of embodiments of the present invention include proteome wide modification profiling and analyses with applications in disease diagnosis, prognosis and drug efficacy studies, enzymatic activity profiling and assays.
摘要:
Metallic nanoclusters capable of providing an enhanced Raman signal from an organic Raman-active molecule incorporated therein are provided. The nanoclusters may be further functionalized, for example, with coatings and layers, such as adsorption layers, metal coatings, silica coatings, probes, and organic layers. The nanoclusters are generally referred to as COINs (composite organic inorganic nanoparticles) and are capable of acting as sensitive reporters for analyte detection. A variety of organic Raman-active compounds and mixtures of compounds can be incorporated into the nanocluster.
摘要:
Metallic nanoclusters capable of providing an enhanced Raman signal from an organic Raman-active molecule incorporated therein are provided. The nanoclusters may be further functionalized, for example, with coatings and layers, such as adsorption layers, metal coatings, silica coatings, probes, and organic layers. The nanoclusters are generally referred to as COINs (composite organic inorganic nanoparticles) and are capable of acting as sensitive reporters for analyte detection. A variety of organic Raman-active compounds and mixtures of compounds can be incorporated into the nanocluster.
摘要:
Embodiments of the present invention provide methods for determining the degenerate binding capabilities of antibodies. The methods provide information about degenerate binding capabilities without the use of involved procedures. Optionally, a molecule toward which an antibody exhibits degenerate binding ability may be identified through the use of a reporter, such as, a composite organic inorganic nanocluster (COIN). COINs are sensitive SERS (surface enhanced Raman spectroscopy) reporters capable of multiplex analysis of analytes.
摘要:
Embodiments of the present invention provide devices and methods for detecting, identifying, distinguishing, and quantifying modification states of proteins and peptides using Surface Enhanced Raman (SERS) and Raman spectroscopy. Applications of embodiments of the present invention include, for example, proteome wide modification profiling and analyses with applications in disease diagnosis, prognosis and drug efficacy studies, enzymatic activity profiling and assays.
摘要:
Described are devices and methods for detecting binding on an electrode surface. In addition, devices and methods for electrochemically synthesizing polymers and devices and methods for synthesizing and detecting binding to the polymer on a common integrated device surface are described.
摘要:
Raman-active molecules having specific affinity for phosphorylated peptides and proteins are provided. The Raman-active affinity molecules contain a Raman active group capable of providing a detectable spectrum. The affinity molecules act as tags or reporter molecules and are useful, for example in detecting the presence of a phosphorylated residue in a peptide or protein through the use of SERS spectroscopy. The affinity molecules provide the ability to detect and quantify phosphatase and kinase activities.