摘要:
An integrated process for the preparation and recovery of BPA in pure form utilizes a series of steps to crystallize the 1:1 adduct of phenol and bisphenol-A, with periodic descaling of the crystallizer surfaces with a modified reactor/crystallizer containing 1 to 40 percent water.
摘要:
In one embodiment, a process for producing a bisphenol A product comprises: reacting phenol with acetone in the presence of a sulfur containing promoter to obtain a reaction mixture comprising bisphenol A, phenol, and the promoter; after reacting the phenol with the acetone, cooling to form a crystal stream comprising crystals of bisphenol A and phenol; separating the crystals from the crystal steam; melting the crystals to form a molten stream of bisphenol A, phenol, and sulfur; contacting the molten stream with a base to reduce a sulfur concentration in the molten stream and form a reduced sulfur stream; and removing phenol from the reduced sulfur stream to form a bisphenol A product. Also disclosed herein is a container comprising: a polycarbonate formed from a bisphenol A having a sulfur concentration of 0.5 to 15 ppm based upon the weight of the bisphenol A.
摘要:
The present invention provides a method for making polycarbonates. One embodiment of the method comprises reacting diphenylcarbonate with a dihydric phenol. The diphenylcarbonate is made by reacting a reaction mixture comprising aryl alcohol together with a dialkyl carbonate in a reactor to produce aryl alkylcarbonate and diaryl carbonate.
摘要:
In one embodiment, a process for producing a bisphenol A product comprises: reacting phenol with acetone in the presence of a sulfur containing promoter to obtain a reaction mixture comprising bisphenol A, phenol, and the promoter; after reacting the phenol with the acetone, cooling to form a crystal stream comprising crystals of bisphenol A and phenol; separating the crystals from the crystal steam; melting the crystals to form a molten stream of bisphenol A, phenol, and sulfur; contacting the molten stream with a base to reduce a sulfur concentration in the molten stream and form a reduced sulfur stream; and removing phenol from the reduced sulfur stream to form a bisphenol A product. Also disclosed herein is a container comprising: a polycarbonate formed from a bisphenol A having a sulfur concentration of 0.5 to 15 ppm based upon the weight of the bisphenol A.
摘要:
In one embodiment, a process for producing a bisphenol A product comprises: reacting phenol with acetone in the presence of a sulfur containing promoter to obtain a reaction mixture comprising bisphenol A, phenol, and the promoter; after reacting the phenol with the acetone, cooling to form a crystal stream comprising crystals of bisphenol A and phenol; separating the crystals from the crystal steam; melting the crystals to form a molten stream of bisphenol A, phenol, and sulfur; contacting the molten stream with a base to reduce a sulfur concentration in the molten stream and form a reduced sulfur stream; and removing phenol from the reduced sulfur stream to form a bisphenol A product.
摘要:
The present invention provides a method for making aromatic carbonates. In this method, an aryl alcohol is reacted with a dialkyl carbonate in a reactor (e.g., a distillation column) to produce an arylalkyl carbonate and diaryl carbonate. The total yield of arylalkyl carbonate and diaryl carbonate together is at least 40%. Also, the selectivity of diaryl carbonate versus diaryl carbonate and arylalkyl carbonate together is preferably at least 25%.
摘要:
The present invention provides a method for making aromatic carbonates. In this method, an aryl alcohol is reacted with a dialkyl carbonate in a reactor (e.g., a distillation column) to produce an arylalkyl carbonate and diaryl carbonate. In one embodiment, the method comprises: feeding to the top subsection of the reactive section of a distillation column, a first stream comprising an aryl alcohol and a catalyst, and feeding to the bottom subsection of the reactive section a second stream containing a dialkylcarbonate, wherein the temperature at the bottom of the column is between 220° C. and 240° C.