摘要:
There is provided a process for producing a seamed, flexible electrostatographic imaging member belt comprising providing a flexible, substantially rectangular, electrostatographic imaging sheet having a first major exterior surface opposite and parallel to a second major exterior surface and a first marginal end region of said sheet opposite and parallel with a second marginal end region; shaping said first marginal end region at an angle to form a first new sloping surface between the first major exterior surface and the second major exterior surface, shaping said second marginal end region at an angle to form a second new sloping surface between the first major exterior surface and the second major exterior surface, wherein the second new sloping surface is substantially parallel with the first new sloping surface; forming the sheet into a loop and overlapping said first new sloping surface with said second new sloping surface to form a mated region; and, joining said first new sloping surface to said second new sloping surface in the mated region to form a thin profile butt-lap seam. The sloping surfaces may be formed using a cutting assembly in accordance with the disclosure.
摘要:
A weldable intermediate transfer belt having a substrate with a homogeneous composition of polyaniline in an amount of from about 2 to about 25 percent by weight of total solids, and a thermoplastic polyimide in an amount of from about 75 to about 98 percent by weight of total solids, and the polyaniline has a particle size of from about 0.5 to about 5.0 microns, and an apparatus for forming images on a recording medium and incorporating the intermediate transfer belt.
摘要:
A welded intermediate transfer belt and process for making the same having a substrate made primarily of at least one polyimide polymer. The weld may be ultrasonically or otherwise welded and may have favorable properties such as relatively thin seam thickness and small weld steps. The weld may be overlapped or miter cut.
摘要:
There is provided an apparatus for producing a cross-sectional angular surface along a substrate, such as a flexible electrostatographic imaging member belt, comprising a cutting blade that is angled at an angle of less than 90° relative to a plane of an associated substrate to be cut. An apparatus may include a support body, and a blade support member connected to the blade support body. The blade support member comprises a cutting blade having a blade edge. The cutting blade may be positioned, in some embodiments, at an angle of less than 45°, and in other embodiments from about 5° to about 15° relative to a plane of an associated substrate to be cut. The cutting assembly may be used to form a sloping surface on each of first and second marginal end regions of a substrate, such as a flexible electrostatographic imaging member belt, wherein the second sloping surface is substantially parallel with the first new sloping surface. A seamed, flexible electrostatographic imaging member belt may be produced by forming the sheet into a loop and overlapping said first new sloping surface with said second new sloping surface to form a mated region; and, joining said first new sloping surface to said second new sloping surface in the mated region to form a thin profile butt-lap seam.
摘要:
A weldable intermediate transfer belt having a substrate with a homogeneous composition of polyaniline in an amount of from about 2 to about 25 percent by weight of total solids, and a thermoplastic polyimide in an amount of from about 75 to about 98 percent by weight of total solids, and the polyaniline has a particle size of from about 0.5 to about 5.0 microns, and an apparatus for forming images on a recording medium and incorporating the intermediate transfer belt.
摘要:
A stress/strain relief process for a flexible, multilayered web stock includes providing a multilayered web stock including at least one layer to be treated, the at least one layer to be treated having a coefficient of thermal expansion significantly differing from a coefficient of thermal expansion of another layer; passing the multilayered web stock over and in contact with a first wrinkle-reducing roller that spontaneously creates transverse tension stress in the at least one layer to be treated; heating at least the at least one layer to be treated above a glass transition temperature Tg of the at least one layer to be treated to thereby create a heated portion of the at least one layer to be treated, a portion of the web stock in proximity to the heated portion of the at least one layer to be treated thereby becoming a heated portion of the web stock; inducing curvature in the heated portion of the web stock; and cooling the heated portion of the web stock at said curvature.
摘要:
Illustrated herein is a process for producing a stress relief electrostatographic imaging member web stock comprising: providing a multilayered imaging member web stock including at least one layer to be treated, the at least one layer to be treated having a coefficient of thermal expansion significantly differing from a coefficient of thermal expansion of another layer; passing the multilayered web stock over and making contact with a circular treatment tube having an outer concave arcuate circumferential surface that spontaneously creates a transverse web stock stretching force to offset the ripple causing transversal compression force in the at least one layer to be treated; heating at least one layer to be treated above the glass transition temperature (Tg) of the at least one layer to be treated to thereby create a heated portion of the at least one layer to be treated, a portion of the web stock in proximity to the heated portion of the at least one layer to be treated thereby becoming a heated portion of the web stock; inducing curvature conformance in the heated portion of the web stock; and, cooling the heated portion of the web stock at said curvature to a temperature below the Tg of the layer. Also included is the stress relieved imaging member web stock produced by this process.
摘要:
Belt material is wrapped around a small diameter mandrel. Instead of cutting the belt to length, the material is then continued to be wrapped around the mandrel, forming a belt material overlap, and held under tension. An ultrasonic welding horn is then traversed across the width of the belt overlap. As this horn is traversed across the overlapped joint, the horn not only joins the belt material wrapped around the mandrel but, as the trailing edge is held under tension, the horn also separates or severs the trailing edge of the material from the welded seam.