Abstract:
An RF switch formed as a micro electro-mechanical switch (MEMS) which can be configured in an array forming a micro electro-mechanical switch array (MEMSA). The MEMS is formed on a substrate. A pin, pivotally carried by the substrate defines a pivot point. A rigid beam or transmission line is generally centrally disposed on the pin forming a teeter-totter configuration. The use of a rigid beam and the configuration eliminates the torsional and bending forces of the beam which can reduce reliability. The switch is adapted to be monolithically integrated with other monolithic microwave integrated circuits (MMIC) for example from HBTs and HEMTs, by separating such MMICs from the switch by way of a suitable polymer layer, such as polyimide, enabling the switch to be monolithically integrated with other circuitry. In order to reduce insertion losses, the beam is formed from all metal, which improves the sensitivity of the switch and also allows the switch to be used in RF switching applications. By forming the beam from all metal, the switch will have lower insertion loss than other switches which use SiO2 or mix metal contacts.
Abstract:
A waveguide structure (10) that provides a transition from a polymeric waveguide (26) to a coaxial connection (48). The coaxial connection (48) includes an outer conductor (50) electrically connected to a top ground plate (36) of the waveguide (26) and an inner conductor (52) that extends into the polymeric material within the waveguide (26). The inner conductor (52) is electrically connected to a capacitive plate (56), and the capacitive plate (56) is electrically connected to an elongated conductive probe (58). The conductive probe (58) is electrically connected to a conductive post (60), which is electrically connected to a bottom ground plate (38) opposite to the top ground plate (36). The conductive probe (58) extends in a direction transverse to the propagation direction of electromagnetic waves, and acts to pick up the energy in the electromagnetic radiation. The capacitive plate (56) provides a shunt capacitance that resonates out the inductance caused by the conductive probe (58) and the inner conductor (52). The conductive probe (58) is positioned relative to a backshort surface (44) of the waveguide (26) a distance that is less than a quarter wavelength of the electromagnetic radiation of interest.
Abstract:
A lanthanum aluminate (LaAlO.sub.3) substrate on which thin films of layered perovskite copper oxide superconductors are formed. Lanthanum aluminate, with a pseudo-cubic perovskite crystal structure, has a crystal structure and lattice constant that closely match the crystal structures and lattice constants of the layered perovskite superconductors. Therefore, it promotes epitaxial film growth of the superconductors, with the crystals being oriented in the proper direction for good superconductive electrical properties, such as a high critical current density. In addition, LaAlO.sub.3 has good high frequency properties, such as a low loss tangent and low dielectric constant at superconductive temperatures. Finally, lanthanum aluminate does not significantly interact with the superconductors. Lanthanum aluminate can also be used to form thin insulating films between the superconductor layers, which allows for the fabrication of a wide variety of superconductor circuit elements.
Abstract:
A lanthanum aluminate (LaAlO.sub.3) substrate on which thin films of layered perovskite copper oxide superconductors are formed. Lanthanum aluminate, with a pseudo-cubic perovskite crystal structure, has a crystal structure and lattice constant that closely match the crystal structures and lattice constants of the layered perovskite superconductors. Therefore, it promotes epitaxial film growth of the superconductors, with the crystals being oriented in the proper direction for good superconductive electrical properties, such as a high critical current density. In addition, LaAlO.sub.3 has good high frequency properties, such as a low loss tangent and low dielectric constant at superconductive temperatures. Finally, lanthanum aluminate does not significantly interact with the superconductors. Lanthanum aluminate can also used to form thin insulating films between the superconductor layers, which allows for the fabrication of a wide variety of superconductor circuit elements.
Abstract:
The invention relates to a method for producing low cost integrated microwave assemblies, where a photoresist layer is deposited onto a substrate, a portion of the photoresist is selectively removed, a first conductive layer is applied, and, a second portion of the photoresist is removed leaving isolation walls and cavities. Electrical components are placed in the cavities and a first dielectric layer fills the cavities. Vias are created in the first dielectric material exposing the electrical contacts, a second conductive layer is applied into the vias and over the first dielectric material. The second conductive layer is patterned by removing a portion of the second conductive layer creating a signal line pattern in the second conductive layer.
Abstract:
A lanthanum aluminate ( LaAlO.sub.3) substrate on which thin films of layered perovskite copper oxide superconductors are formed. Lanthanum aluminate, with a pseudo-cubic perovskite crystal structure, has a crystal structure and lattice constant that closely match the crystal structures and lattice constants of the layered perovskite superconductors. Therefore, it promotes epitaxial film growth of the superconductors, with the crystals being oriented in the proper direction for good superconductive electrical properties, such as a high critical current density. In addition, LaAlO.sub.3 has good high frequency properties, such as a low loss tangent and low dielectric constant at superconductive temperatures. Finally, lanthanum aluminate does not significantly interact with the superconductors. Lanthanum aluminate can also used to form thin insulating films between the superconductor layers, which allows for the fabrication of a wide variety of superconductor circuit elements.
Abstract:
Systems and methods are disclosed herein to provide improved phased array antenna system. For example, in accordance with an embodiment of the present invention, a phased array antenna system includes a plurality of horn/filter assemblies. A plurality of modules are adapted to provide RF signals to the horn/filter assemblies. Each of the horn/filter assemblies is mounted on a top surface of a corresponding one of the modules. A thermal system is adapted to cool the modules. The modules are mounted on a first surface of the thermal system. A plurality of distribution boards associated with the modules are mounted on a second surface of the thermal system. A plurality of interconnects associated with the modules are adapted to connect the modules with the distribution boards through the thermal system.
Abstract:
Systems and methods are disclosed herein to provide improved phased array antenna system. For example, in accordance with an embodiment of the present invention, a phased array antenna system includes a plurality of horn/filter assemblies. A plurality of modules are adapted to provide RF signals to the horn/filter assemblies. Each of the horn/filter assemblies is mounted on a top surface of a corresponding one of the modules. A thermal system is adapted to cool the modules. The modules are mounted on a first surface of the thermal system. A plurality of distribution boards associated with the modules are mounted on a second surface of the thermal system. A plurality of interconnects associated with the modules are adapted to connect the modules with the distribution boards through the thermal system.
Abstract:
An SSPA module in accordance with the present invention comprises a signal input (102), and a radial splitter (100) connected to the signal input (102) comprising a plurality of radially extending splitter waveguides 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126. The SSPA module also includes a signal output (202), and a radial combiner (200) connected to the signal output (202) comprising a plurality of radially extending combiner waveguides 204, 206, 208, 210, 212, 214, 216, 218, 220, 222, 224, 226. Connections between the splitter (100) and combiner (200) are provided by a plurality of vertically extending waveguides 404, 406, 408, 410, 412, 414, 416, 418, 420, 422, 424, 426. The SSPA module also includes a plurality of processing circuits 304, 308, 308, 310, 312, 314, 316, 318, 320, 322, 324, 326, for example MMIC amplifiers, connected to the combiner waveguides 204, 206, 208, 210, 212, 214, 216, 218, 220, 222, 224, 226. A waveguide to microstrip transition (510) may also be used to connect signals propagating in the waveguides to and from microstrip lines connected to the processing circuitry (304-326). Generally, the transition (510) includes a waveguide section (512) with a top conducting layer (516) that defines a first slit (526) and a second slit (528) bounding a transition area (530) abutting a microstrip section (514) to form a waveguide to microstrip transition.
Abstract:
An antenna and power amplifier element assembly may include an antenna assembly and a quasi-optic power amplifier. The quasi-optic power amplifier may include an output transistor coupled to the antenna assembly. A harmonic trap may be coupled to the quasi-optic power amplifier.