摘要:
Methods, systems and apparatus for managing and/or enforcing one or more policies for managing internet protocol (“IP”) traffic among multiple accesses of a network in accordance with a policy for managing bandwidth among the multiple accesses are disclosed. Among the methods, systems and apparatus is a method that may include obtaining performance metrics associated with the multiple accesses. The method may also include adapting one or more rules of one or more the policies for managing IP traffic among the plurality of accesses based, at least in part, on the performance metrics and the policy for managing bandwidth among the plurality of accesses. The method may further include managing IP traffic associated with at least one wireless transmit and/or receive unit (“WTRU”) among the plurality of accesses responsive to the adapted rules.
摘要:
Systems and methods for integrating bandwidth management (BWM) equipment into a network in order to manage the use of bandwidth over multiple radio access technologies (RATs) relating to communications between a wireless transmit receive unit and a mobile core network (MCN). When integrating itself into the network, a BWM server may be placed between a MCN and an femto access point. In order for WTRUs to communicate with the MCN through the femto access point and a BWM server, a BWM server may need deep packet inspection capabilities.
摘要:
Systems and methods for integrating bandwidth management (BWM) equipment into a network in order to manage the use of bandwidth over multiple radio access technologies (RATs) relating to communications between a wireless transmit receive unit and a mobile core network (MCN). When integrating itself into the network, a BWM server may be placed between a MCN and an femto access point. In order for WTRUs to communicate with the MCN through the femto access point and a BWM server, a BWM server may need deep packet inspection capabilities.
摘要:
The implementation of Local IP Access (LIPA), “Extended” LIPA (ELIPA), and Selected IP Traffic Offload (SIPTO) for the design of a “Converged Gateway” (CGW) are disclosed. The gateway system may provide various features such as femtocell access to local networks, public Internet, and private service provider networks.
摘要:
The implementation of Local IP Access (LIPA), “Extended” LIPA (ELIPA), and Selected IP Traffic Offload (SIPTO) for the design of a “Converged Gateway” (CGW) are disclosed. The gateway system may provide various features such as femtocell access to local networks, public Internet, and private service provider networks.
摘要:
Systems and methods for providing multiple connections or interfaces at the same time may be disclosed herein. For example, in an embodiment, a first RRC connection may be established between a wireless transmit and receive unit (WTRU) or user equipment (UE) and network node such as an eNB and a second RRC connection may be established between the WTRU or UE and the network node such as the eNB or another network node such as another eNB. The first RRC connection and the second RRC connections may then be maintained in parallel (e.g. at the same time).
摘要:
A method and apparatus for bandwidth aggregation for an Internet protocol (IP) flow are disclosed. A sender may split IP packets on a single IP flow, and transmit the IP packets to a receiver via at least two interfaces. The sender splitting the IP packets over multiple interfaces may not send any signaling to the receiver. Alternatively, the sender may send information to the receiver for configuring distribution of the IP packets over multiple interfaces. The information may be carried on a binding update message, a binding acknowledgement message, or a binding refresh request message. The IP packets may be split and transmitted by a logical interface that sits between an IP layer and a layer 2, or by a bandwidth aggregation (BWA) middleware located between a transmission control protocol (TCP) layer and an IP layer.
摘要:
A method and apparatus for bandwidth aggregation for an Internet protocol (IP) flow are disclosed. A sender may split IP packets on a single IP flow, and transmit the IP packets to a receiver via at least two interfaces. The sender splitting the IP packets over multiple interfaces may not send any signaling to the receiver. Alternatively, the sender may send information to the receiver for configuring distribution of the IP packets over multiple interfaces. The information may be carried on a binding update message, a binding acknowledgement message, or a binding refresh request message. The IP packets may be split and transmitted by a logical interface that sits between an IP layer and a layer 2, or by a bandwidth aggregation (BWA) middleware located between a transmission control protocol (TCP) layer and an IP layer.
摘要:
Systems and methods for providing a converged gateway (CGW) may be disclosed. A policy may be by the CGW to make routing decisions (e.g. segregation and/or aggregation of flows or traffic associated with data) for various interfaces and/or radio access technologies (RATs) that may be included in a LAN, device, and/or communication system. The policy may be locally stored within the CGW. Dynamic flow management, load balancing, offloading, PDF context establishment, prioritization, detection of devices, and the like may also be provided and/or implemented in the CG W and may be used to route flows and/or traffic associated with data.
摘要:
Systems and methods for providing multiple connections or interfaces at the same time may be disclosed herein. For example, in an embodiment, a first RRC connection may be established between a wireless transmit and receive unit (WTRU) or user equipment (UE) and network node such as an eNB and a second RRC connection may be established between the WTRU or UE and the network node such as the eNB or another network node such as another eNB. The first RRC connection and the second RRC connections may then be maintained in parallel (e.g. at the same time).