Abstract:
A supercritical water reformer (SCWR) and methods for using supercritical water to convert hydrocarbons, particularly hydrocarbon fuels such as diesel fuel or gasoline, into carbonaceous gases and hydrogen. The synthesis gas stream generated by the fuel reforming reaction can then be further refined to increase hydrogen content, and the resultant hydrogen can be utilized to power fuel cells.
Abstract:
A system for reforming diesel fuel into hydrogen including feeds for water and diesel fuel, a supercritical water (SCW) reactor in fluid communication with the water feed and the diesel fuel, at least one pre-heater in thermal communication with the water feed, the diesel fuel feed that is configured to heat water from the water feed and diesel fuel from the diesel fuel feed to a predetermined temperature equal to or greater than the critical temperature of water before the water and the diesel fuel are mixed, a water-gas shift (WGS) reactor, and a hydrogen capturing system, where the SCW reactor reforms the diesel fuel into a synthesis gas comprising a mixture of hydrogen and carbon monoxide and outputs the synthesis gas, the synthesis gas output by the SCW reactor is fed into the WGS reactor which converts the carbon monoxide into carbon dioxide and hydrogen and outputs an output gas including a higher percentage of hydrogen to carbon monoxide compared to the synthesis gas, and the hydrogen in the output gas is captured by the hydrogen capturing system.
Abstract:
A system for reforming diesel fuel into hydrogen including feeds for water and diesel fuel, a supercritical water (SCW) reactor in fluid communication with the water feed and the diesel fuel, at least one pre-heater in thermal communication with the water feed, the diesel fuel feed that is configured to heat water from the water feed and diesel fuel from the diesel fuel feed to a predetermined temperature equal to or greater than the critical temperature of water before the water and the diesel fuel are mixed, a water-gas shift (WGS) reactor, and a hydrogen capturing system, where the SCW reactor reforms the diesel fuel into a synthesis gas comprising a mixture of hydrogen and carbon monoxide and outputs the synthesis gas, the synthesis gas output by the SCW reactor is fed into the WGS reactor which converts the carbon monoxide into carbon dioxide and hydrogen and outputs an output gas including a higher percentage of hydrogen to carbon monoxide compared to the synthesis gas, and the hydrogen in the output gas is captured by the hydrogen capturing system.
Abstract:
Methods for using supercritical water to convert hydrocarbons, particularly hydrocarbon fuels such as diesel fuel, jet fuel, or gasoline, into carbonaceous gases and hydrogen. The synthesis gas stream generated by the fuel reforming reaction can then be further refined to increase hydrogen content, and the resultant hydrogen can be utilized to power fuel cells.
Abstract:
A traffic incident detection system (10) includes both the collection and analysis of traffic data and employs a time-indexed traffic anomaly detection algorithm which partitions time into categories of “type of day,” and “time of day”. Using this partition, a fuzzy neuromorphic, unsupervised learning algorithm calibrates fuzzy sets as “normal” and “abnormal” for a plurality of traffic descriptors. Fuzzy composition techniques are used, on a per traffic lane basis, to combine multiple traffic descriptors in order to determine membership in a “normal” or “abnormal” lane status. Each lane status is then combined to determine the overall status of a road segment. Initial training of the algorithm occurs during the first few weeks after a sensor (12) is installed. On-line background training continues thereafter to continually tune and track seasonal changes affecting system performance.
Abstract:
Apparatus (10) for monitoring vehicle (V) usage on a roadway (H). An AC light source (12) comprises either an incandescent or gas discharge light source. The light source has a detectable AC ripple in its output. The light source is mounted or installed above the roadway surface on a conventional light standard (16) or highway information standard (18) such that the light source directs its rumination downwardly onto the roadway. A light detector (34) detects light reflected from off the roadway. Light from the light source together with the collection optics of the light detector define a "footprint" (30) on the roadway surface and vehicles moving over the roadway pass over this footprint. The directed, reflected light has characteristics which are varied in response to passage of a vehicle over the roadway and through a path (X1, X2) of light between the source and detector. A processor (52) processes the reflected light and is responsive to variations in the characteristics of detected, reflected light caused by vehicle passage. The processor is capable of determining the number of vehicles passing over the roadway surface during a predetermined period of time, the speed of the vehicles, and the type of a vehicle. Further, the detector and processor are sensitive to changes in atmospheric conditions to adjust detection thresholds so the apparatus maintains its responsiveness to the passage of vehicles.
Abstract:
Methods for using supercritical water to convert hydrocarbons, particularly hydrocarbon fuels such as diesel fuel, jet fuel, or gasoline, into carbonaceous gases and hydrogen. The synthesis gas stream generated by the fuel reforming reaction can then be further refined to increase hydrogen content, and the resultant hydrogen can be utilized to power fuel cells.
Abstract:
Systems and methods using the properties of supercritical water to allow raw air including a contaminant to be combined with water and to be purified in a supercritical water oxidation (SCWO) process. A supercritical water oxidation (SCWO) air purifier will generally take in a mixture of water and raw air which includes oxygen via a pumping and mixing apparatus, put the mixture into a supercritical water reactor (SCWR), and run the resultant effluent stream through a system for separating the water from the resultant clean air and the other relatively harmless outputs of the supercritical water reactor (SCWO).
Abstract:
Systems and methods using the properties of supercritical water to allow raw air including a contaminant to be combined with water and to be purified in a supercritical water oxidation (SCWO) process. A supercritical water oxidation (SCWO) air purifier will generally take in a mixture of water and raw air which includes oxygen via a pumping and mixing apparatus, put the mixture into a supercritical water reactor (SCWR), and run the resultant effluent stream through a system for separating the water from the resultant clean air and the other relatively harmless outputs of the supercritical water reactor (SCWO).
Abstract:
Systems and methods using the properties of supercritical water to allow raw air including a contaminant to be combined with water and to be purified in a supercritical water oxidation (SCWO) process. A supercritical water oxidation (SCWO) air purifier will generally take in a mixture of water and raw air which includes oxygen via a pumping and mixing apparatus, put the mixture into a supercritical water reactor (SCWR), and run the resultant effluent stream through a system for separating the water from the resultant clean air and the other relatively harmless outputs of the supercritical water reactor (SCWO).