摘要:
A method and apparatus for the local delivery of therapeutic agents reduces myocardial tissue damage due to ischemia. A local delivery device is used for delivery of the therapeutic agents into a coronary artery which feeds the ischemic myocardial tissue. According to one example, an implantable medical device for delivering insulin locally to myocardial tissue includes a therapeutic dosage of insulin in a biocompatible polymer affixed to a stent. The therapeutic dosage of insulin is released from the stent at a therapeutic dosage and over an administration period effective to reduce ischemic injury of the myocardial tissue.
摘要:
A method for decreasing the level of restenosis following a stent placement medical intervention involves the continuous administration of a dose of an anti-restenotic agent, such as paclitaxel, from the stent to vascular tissue in need of treatment in a controlled, extended, and substantially linear drug release profile. The method of substantially linear extended release increases the therapeutic effectiveness of administration of a given dosage. In one example, a method of reducing restenosis includes delivering paclitaxel from a stent to an artery at a minimum release rate of 1 percent of the total dosage of paclitaxel on the stent per day throughout an entire administration period from the time of implantation of the stent until the time that substantially all the paclitaxel is released from the stent.
摘要:
A system for delivery of a beneficial agent in the form of a viscous liquid or paste allows holes in a medical device to be loaded in a single step process. The loading of a beneficial agent in a paste form also provides the ability to deliver large and potentially sensitive molecules including proteins, enzymes, antibodies, antisense, ribozymes, gene/vector constructs, and cells including endothelial cells.
摘要:
A method for decreasing the level of restenosis following a stent placement medical intervention involves the continuous administration of a dose of an immunosuppressant or anti-inflammatory agent from reservoirs in a stent to vascular tissue in need of treatment in a controlled, two phase drug release profile. It is envisioned that the vascular tissue in need of treatment is arterial tissue, specifically coronary arterial tissue. The agent or drug can be the calcineurin inhibitor Pimecrolimus. The drug can be held within reservoirs in the stent in a drug delivery matrix comprised of the drug and a bioresorbable polymeric material and optionally additives to regulate the drug release.
摘要:
A multi solvent drug delivery matrix formation method is used to place layers into a reservoir in a stent in a stepwise manner to achieve extended delivery of water soluble, sensitive, or difficult to deliver drugs. The multi solvent matrix formation method allows the formation of a drug reservoir with a layered morphology in which the mixing between layers is limited to allow the different layers to perform different functions in controlling drug delivery. A stent having a drug delivery matrix includes a first beneficial agent layer affixed to the stent by depositing a first solution of a first polymer and a first solvent, and a second beneficial agent layer affixed to the first beneficial agent layer by depositing a second solution of a second polymer and a second solvent. The second solvent is selected so that the first polymer is substantially insoluble in the second solvent to prevent degradation of the first polymer during deposition of the second polymer. A therapeutic agent is provided in the first beneficial agent layer or the second beneficial agent layer to form a drug delivery matrix.
摘要:
The present invention relates to implantable medical devices for delivery of therapeutic agents, such as drugs, to a patient. More particularly, the invention relates to a device having therapeutic agents protected by a protective layer that prevents or retards processes that deactivate or degrade the active agents.
摘要:
A method for reducing the level of restenosis following a stent placement medical intervention involves the continuous administration of a dose of an anti-restenotic agent, such as paclitaxel, from the stent to vascular tissue in need of treatment in a controlled and extended drug release profile for a period of at least 60 days in vivo. The in vivo release profile is determined by in vivo animal experiments involving implanting a series of stents in animals, explanting the stents from the animals at selected time points, and extracting remaining drug from the explanted stents.
摘要:
An implantable drug delivery device loaded with a beneficial agent is provided, wherein the beneficial agent is in two different forms, a first form having a higher solubility and a second form having a lower solubility, and wherein the two different forms are present in a proportion which is selected to achieve a desired release rate.
摘要:
A method for decreasing the level of restenosis following a stent placement medical intervention involves the continuous administration of a dose of an anti-restenotic agent, such as Pimecrolimus, from the stent to vascular tissue in need of treatment in a controlled and extended drug release profile for a period of at least 45 days in vivo. The in vivo release profile is determined by in vivo animal experiments involving implanting a series of stents in animals, explanting the stents from the animals at selected time points, and extracting remaining drug from the explanted stents.
摘要:
A method for treating blood vessel occlusions in the heart delivers an angiogenic agent from an implantable device locally to the walls of the blood vessel over an extended administration period sufficient to establish self sustaining blood vessels. An expandable medical device for delivery of angiogenic agents includes openings in the expandable medical device struts to deliver one or more angiogenic agents to promote angiogenesis. The device can sequentially deliver a plurality of agents to promote angiogenesis to treat, for example, disorders and conditions associated with chronic total occlusions.