摘要:
The present invention generally provides an apparatus and method for processing a surface of a substrate in physical vapor deposition (PVD) chamber that has an increased anode surface area to improve the deposition uniformity on large area substrates. In general, aspects of the present invention can be used for flat panel display processing, semiconductor processing, solar cell processing, or any other substrate processing. In one aspect, the processing chamber contains one or more anode assemblies that are used to increase and more evenly distribute the anode surface area throughout the processing region of the processing chamber. In one aspect, the anode assembly contains a conductive member and conductive member support. In one aspect, the processing chamber is adapted to allow the conductive member to be removed from the processing chamber without removing any major components from the processing chamber.
摘要:
A method for making a film stack containing one or more metal-containing layers and a substrate processing system for forming the film stack on a substrate are provided. The substrate processing system includes at least one transfer chamber coupled to at least one load lock chamber, at least one first physical vapor deposition (PVD) chamber configured to deposit a first material layer on a substrate, and at least one second PVD chamber for in-situ deposition of a second material layer over the first material layer within the same substrate processing system without breaking the vacuum or taking the substrate out of the substrate processing system to prevent surface contamination, oxidation, etc. The substrate processing system is configured to provide high throughput and compact footprint for in-situ sputtering of different material layers in designated PVD chambers.
摘要:
The present invention generally provides an apparatus and method for processing a surface of a substrate in physical vapor deposition (PVD) chamber that has an increased anode surface area to improve the deposition uniformity on large area substrates. In general, aspects of the present invention can be used for flat panel display processing, semiconductor processing, solar cell processing, or any other substrate processing. In one aspect, the processing chamber contains one or more anode assemblies that are used to increase and more evenly distribute the anode surface area throughout the processing region of the processing chamber. In one aspect, the anode assembly contains a conductive member and conductive member support. In one aspect, the processing chamber is adapted to allow the conductive member to be removed from the processing chamber without removing any major components from the processing chamber.
摘要:
The present invention generally provides an apparatus and method for processing a surface of a substrate in physical vapor deposition (PVD) chamber that has an increased anode surface area to improve the deposition uniformity on large area substrates. In general, aspects of the present invention can be used for flat panel display processing, semiconductor processing, solar cell processing, or any other substrate processing. In one aspect, the processing chamber contains one or more anode assemblies that are used to increase and more evenly distribute the anode surface area throughout the processing region of the processing chamber. In one aspect, the anode assembly contains a conductive member and conductive member support. In one aspect, the processing chamber is adapted to allow the conductive member to be removed from the processing chamber without removing any major components from the processing chamber.
摘要:
The present invention generally provides an apparatus and method for processing a surface of a substrate in physical vapor deposition (PVD) chamber that has an increased anode surface area to improve the deposition uniformity on large area substrates. In general, aspects of the present invention can be used for flat panel display processing, semiconductor processing, solar cell processing, or any other substrate processing. In one aspect, the processing chamber contains one or more adjustable anode assemblies that are used to increase and more evenly distribute the anode surface area throughout the processing region of the processing chamber. In one aspect, the one or more adjustable anode assemblies are adapted to exchange deposited on anode surfaces with new, un-deposited on, anode surfaces without breaking vacuum. In another aspect, a shadow frame that has a path to ground is adapted to contact a deposited layer on the surface of a substrate during deposition to increase the anode area and thus deposition uniformity.
摘要:
The present invention generally provides an apparatus for processing a surface of a substrate in a physical vapor deposition (PVD) chamber that has a sputtering target that has separately biasable sections, regions or zones to improve the deposition uniformity. In general, aspects of the present invention can be used for flat panel display processing, semiconductor processing, solar cell processing, or any other substrate processing. In one aspect, each of the target sections of the multizone target assembly are biased at a different cathodic biases by use of one or more DC or RF power sources. In one aspect, each of the target sections of the multizone target assembly are biased at a different cathodic biases by use of one power source and one or more resistive, capacitive and/or inductive elements. In one aspect, the processing chamber contains a multizone target assembly that has one or more ports that are adapted deliver a processing gas to the processing region of the PVD chamber. In one aspect, the processing chamber contains a multizone target assembly that has one or more magnetron assemblies positioned adjacent to one or more of the target sections.
摘要:
The present invention generally provides a method for processing a surface of a substrate in a physical vapor deposition (PVD) chamber that has a sputtering target that has separately biasable sections, regions or zones to improve the deposition uniformity. In general, aspects of the present invention can be used for flat panel display processing, semiconductor processing, solar cell processing, or any other substrate processing. In one aspect, each of the target sections of the multizone target assembly are biased at a different cathodic biases by use of one or more DC or RF power sources. In one aspect, each of the target sections of the multizone target assembly are biased at a different cathodic biases by use of one power source and one or more resistive, capacitive and/or inductive elements. In one aspect, the processing chamber contains a multizone target assembly that has one or more ports that are adapted deliver a processing gas to the processing region of the PVD chamber. In one aspect, the processing chamber contains a multizone target assembly that has one or more magnetron assemblies positioned adjacent to one or more of the target sections.
摘要:
Embodiments of the present invention generally relate to sputtering targets used in semiconductor manufacturing. In particular, the invention relates to bonding the sputtering target to a backing plate that supports the sputtering target in a deposition chamber. In one embodiment, a method of bonding at least one sputtering target tile to a backing plate comprises providing an elastomeric adhesive layer between the at least one sputtering target tile and the backing plate, and providing at least one metal mesh within the elastomeric adhesive layer, wherein at least a portion of the at least one metal mesh contacts both the at least one sputtering target tile and the backing plate, and the at least a portion of the at least one metal mesh is made of metal wire with diameter greater than 0.5 mm.
摘要:
A physical vapor deposition chamber, which includes a sputtering target, a magnetron disposed on a back side of the sputtering target, a metal sheet disposed between at least a portion of the magnetron and the sputtering target to reduce the effect of the magnetic strength of the portion of the magnetron on the sputtering target and a substrate support for holding a substrate.
摘要:
Embodiments of an apparatus and method of monitoring and controlling a large area substrate processing chamber are provided. Multiple types of metrology tools can be installed in the substrate processing system to measure film properties after substrate processing in a processing chamber. Several number of a particular type of metrology tools can also be installed in the substrate processing system to measure film properties after substrate processing in a processing chamber. The metrology tools can be installed in a metrology chamber, a process chamber, a transfer chamber, or a loadlock.