摘要:
The present invention relates to a more advanced preparation method of organic-transition metal hydride as a hydrogen storage material, precisely a more advanced preparation method of organic-transition metal hydride containing aryl or alkyl group that facilitates safe and reverse storage of massive amount of hydrogen.The present invention relates to a preparation method of an organic-transition metal hydride comprising the steps of preparing a complex reducing agent composition by reacting alkali metal, alkali earth metal or a mixture thereof and (C10˜C20) aromatic compound in aprotic polar solvent; and preparing organic-transition metal hydride by reacting the prepared complex reducing agent composition and organic-transition metal halide.The method of the present invention has advantages of minimizing the numbers and the amounts of byproducts by using a complex reducing agent and producing organic-transition metal hydride safely without denaturation under more moderate reaction conditions.
摘要:
The present invention relates to an advanced preparation method of organic-transition metal hydride used as hydrogen storage materials, the method including: preparing organic-transition metal-aluminum hydride complexes by reacting the organic-transition metal halide with metal aluminum hydride compounds; and preparing the organic-transition metal hydride by reacting the organic-transition metal aluminum hydride complexes with Lewis bases.Since the preparation method of the organic-transition metal hydride according to the present invention does not use catalysts, it has advantages that it does not cause problems due to poisoning and can prepare the organic-transition metal hydride at high yield under less stringent conditions. The hydrogen storage materials containing the organic-transition metal hydride prepared from the preparation method can safely and reversibly store a large amount of hydrogen.
摘要:
The present invention relates to an improved preparation method of an organic-transition metal hydride as a hydrogen storage material, especially an improved preparation method of an organic-transition metal hydride containing aryl or alkyl group that facilitates safe and reversible storage of a massive amount of hydrogen. The present invention also relates to a preparation method of an organic-transition metal hydride comprising the steps of: preparing a complex reducing agent composition by reacting alkali metal, alkali earth metal or a mixture thereof and a C10 to C20 aromatic compound in aprotic polar solvent; and preparing the organic-transition metal hydride by reacting the prepared complex reducing agent composition with an organic-transition metal halide in the absence of a hydrogen source. The method has the advantages of minimizing the number and amount of byproducts by using a complex reducing agent and producing an organic-transition metal hydride safely without denaturation under more moderate reaction conditions.
摘要:
The present invention relates to an advanced preparation method of organic-transition metal hydride used as hydrogen storage materials, the method including: preparing organic-transition metal-aluminum hydride complexes by reacting the organic-transition metal halide with metal aluminum hydride compounds; and preparing the organic-transition metal hydride by reacting the organic-transition metal aluminum hydride complexes with Lewis bases.Since the preparation method of the organic-transition metal hydride according to the present invention does not use catalysts, it has advantages that it does not cause problems due to poisoning and can prepare the organic-transition metal hydride at high yield under less stringent conditions. The hydrogen storage materials containing the organic-transition metal hydride prepared from the preparation method can safely and reversibly store a large amount of hydrogen.
摘要:
The present invention relates to substances which can be applied to the technical fields of gas storages, polymerization catalysts and optical isomers, their intermediates, and processes for preparing the same, which is characterized in that 1) possible disintegration of structure of the scaffold material (SM) is impeded, and 2) they are prepared by a simple manufacturing system as compared to the substances conventionally suggested in the application field. Specifically, it relates to scaffold material-transition metal hydride complexes comprised of scaffold material (SM) and transition metal hydride (M1H(n-1)) which is chemically bonded to the functional groups formed on the scaffold material, SM-transition metal halide complex and SM-transition metal ligand complex as the precursors, and a process for preparing the same. The SM-transition metal hydride complex according to the present invention is a substance for hydrogen storage which adsorbs hydrogen via Kubas adsorption. The complex according to the invention can store high capacity of hydrogen with safety and reversibility, while disintegration of its structure does not occur even with repeated adsorption-desorption of hydrogen.
摘要:
The present invention relates to a more advanced preparation method of organic-transition metal hydride as a hydrogen storage material, precisely a more advanced preparation method of organic-transition metal hydride containing aryl or alkyl group that facilitates safe and reverse storage of massive amount of hydrogen. The present invention relates to a preparation method of an organic-transition metal hydride comprising the steps of preparing a complex reducing agent composition by reacting alkali metal, alkali earth metal or a mixture thereof and (C10-C20) aromatic compound in aprotic polar solvent and preparing organic-transition metal hydride by reacting the prepared complex reducing agent composition and organic transition metal halide. The method of the present invention has advantages of minimizing the numbers and the amounts of byproducts by using a complex reducing agent and producing organic-transition metal hydride safely without denaturation under more moderate reaction conditions.
摘要:
The present invention relates to substances which can be applied to the technical fields of gas storages, polymerization catalysts and optical isomers, their intermediates, and processes for preparing the same, which is characterized in that 1) possible disintegration of structure of the scaffold material (SM) is impeded, and 2) they are prepared by a simple manufacturing system as compared to the substances conventionally suggested in the application field. Specifically, it relates to scaffold material-transition metal hydride complexes comprised of scaffold material (SM) and transition metal hydride (M1H(n-1)) which is chemically bonded to the functional groups formed on the scaffold material, SM-transition metal halide complex and SM-transition metal ligand complex as the precursors, and a process for preparing the same. The SM-transition metal hydride complex according to the present invention is a substance for hydrogen storage which adsorbs hydrogen via Kubas adsorption. The complex according to the invention can store high capacity of hydrogen with safety and reversibility, while disintegration of its structure does not occur even with repeated adsorption-desorption of hydrogen.
摘要:
The present invention relates to an organic-transition metal complex which can safely and reversibly store hydrogen in a high capacity, and a process for preparing the same. In order to achieve the objects, the hydrogen storage material according to the invention comprises a complex generated by combination of an organic substance containing a hydroxyl (—OH) group(s) with a transition metal containing compound, which can more effectively store hydrogen with more than one transition metal being bonded per molecule. Examples of the organic substances containing hydroxyl (—OH) group(s) include alkyl derivatives such as ethylene glycol, trimethylene glycol and glycerol, and hydroxyl-containing aryl derivatives such as fluoroglucinol. As the transition metal, titanium (Ti), vanadium (V) and scandium (Sc), which can make Kubas binding, may be mentioned.
摘要:
A system and method for managing a vehicle Ethernet communication network are disclosed. More specifically, each unit in a vehicle Ethernet communication network is configured to initially enter a power-on (PowerOn) mode when is applied to each unit of the vehicle to initialize operational programs. Once powered on, each unit enters a normal mode in which a node for each unit participates in a network to request the network. Subsequently, each unit enters a sleep indication (SleepInd) mode where other nodes are not requested even though the network has already been requested by the other nodes. A communication mode is then terminated at each unit and each unit enters a wait bus sleep (WaitBusSleep) mode in which all nodes connected to the network are no longer in communication and are waiting to switch to sleep mode. Finally, each unit is powered off to prevent communication between units in the network.
摘要:
Disclosed is a heat-resistant aluminum alloy including aluminum and two types of alloy elements which are combined while forming a homogeneous solid solution reinforcing phase. The disclosed heat-resistant aluminum alloy includes the alloy elements that form a homogeneous solid solution and do not have a solvus line with respect to aluminum as a matrix metal and, therefore, the formed homogeneous solid solution reinforcing phase does not react with aluminum even at a temperature up to 300° C., thus not becoming coarse or undergoing phase decomposition. Consequently, the disclosed aluminum alloy may have remarkably enhanced heat resistance.