Abstract:
The present invention relates to a porous metal organic framework formed by Mg2+ ions to which 5-tert-butylisophthalate ions are coordinated to form a framework structure. The invention further provides a process for preparing it and its use, for example for the storage, separation or controlled release of a substance such as a gas or gas mixture.
Abstract:
A method for making metastable compounds of Me metal, argon and hydrogen, comprising the steps of generating a high frequency plasma discharge in a flow of hydrogen-argon gas mixture, the plasma discharge having a higher temperature plasma generating active region and producing a flow of plasma downstream of the plasma discharge; establishing a zone of substantially zero axial flow of the mixture within the active region of the plasma discharge relative to the flow of plasma immediately downstream of the generating means; introducing finely powdered Me metal into or near the zone and within the active region at a rate conducive to evaporation of the metal in the plasma discharge; rapidly cooling the reaction products resulting from interaction of the Me metal with the plasma to precipitate a solid component; and passivating the surface of the solid component.
Abstract:
Rare earth (RE) superhydrides exhibit high temperature superconductivity but are difficult to characterize and use in applications due to their high formation and stability pressures, which are typically in excess of 100 GPa. Cryomilling of metal precursors improves hydrogen reactivity and hydrogen uptake for forming such metal hydrides at lower pressures. As an example, an elemental lanthanum precursor was milled at liquid nitrogen temperatures for different time intervals. After exposure to gaseous hydrogen at 380° C. and 100 bar, a systematic enhancement of hydrogen absorption with increasing ball milling time was found for forming the LaHx, x=2-3 phase. Exposing the La precursor to pressures up to 60 GPa with an ammonia borane (BNH6) hydrogen source resulted in a hypervalent LaH4 phase. This LaH4 phase is associated with the suppression of a rhombohedral distortion of the Fm3m cubic structure after cryomilling the precursor.
Abstract:
A method for storing, separating or controlled releasing of at least one substance, by up taking the at least one substance by a porous metal organic framework material formed by Mg2+ ions to which 5-tert-buthylisophthalate ions are coordinated to form a framework structure.
Abstract:
Aqueous hydrides including a metal, a metal hydroxide and water and a method of manufacture therefor are provided. The method includes a reaction which does not require precise stoichiometric proportions of metal, alkali hydroxide and water. The specific gravity of the reaction mixture is monitored and adjusted where appropriate during the reaction process. Temperature and rate of reaction are controlled to prevent formation of silicates. Aqueous by, rises produced in accordance with the invention exhibit polymer characteristics and are suitable for use as coatings, reducing viscosity, sequestering agents, emulsion agents, surfactants, detergents and the like.
Abstract:
A magnesium battery 10 according to the present invention includes a positive electrode 12, a negative electrode 14 having a magnesium-containing negative electrode active material, and an inorganic magnesium solid electrolyte 16 that is interposed between the positive electrode 12 and the negative electrode 14, has a complex ion structure that contains magnesium and hydrogen, and conducts magnesium ions. The inorganic magnesium solid electrolyte 16 may contain a compound having at least one selected from boron and nitrogen. The inorganic magnesium solid electrolyte may be produced by a production method that includes a heat-treatment step of mixing and heating Mg(BH4)2 and Mg(NH2)2 to form a compound having a complex ion structure that contains magnesium and hydrogen.
Abstract:
A magnesium battery 10 according to the present invention includes a positive electrode 12, a negative electrode 14 having a magnesium-containing negative electrode active material, and an inorganic magnesium solid electrolyte 16 that is interposed between the positive electrode 12 and the negative electrode 14, has a complex ion structure that contains magnesium and hydrogen, and conducts magnesium ions. The inorganic magnesium solid electrolyte 16 may contain a compound having at least one selected from boron and nitrogen. The inorganic magnesium solid electrolyte may be produced by a production method that includes a heat-treatment step of mixing and heating Mg(BH4)2 and Mg(NH2)2 to form a compound having a complex ion structure that contains magnesium and hydrogen.
Abstract:
A method of making hydrogenated Group IVA compounds having reduced metal-based impurities, compositions and inks including such Group IVA compounds, and methods for forming a semiconductor thin film. Thin semiconducting films prepared according to the present invention generally exhibit improved conductivity, film morphology and/or carrier mobility relative to an otherwise identical structure made by an identical process, but without the washing step. In addition, the properties of the present thin film are generally more predictable than those of films produced from similarly prepared (cyclo)silanes that have not been washed according to the present invention. The present invention advantageously provides semiconducting thin film structures having qualities suitable for use in electronics applications, such as display devices or RF ID tags, while enabling high-throughput manufacturing processes that form such thin films in seconds or minutes, rather than hours or days as with conventional photolithographic processes.
Abstract:
A Lewis base complex of a haloberyllium hydride is prepared by reacting a hydride of an alkali metal or alkaline earth metal with a solution of beryllium halide in the presence of a Lewis base.
Abstract:
A method of making hydrogenated Group IVA compounds having reduced metal-based impurities, compositions and inks including such Group IVA compounds, and methods for forming a semiconductor thin film. Thin semiconducting films prepared according to the present invention generally exhibit improved conductivity, film morphology and/or carrier mobility relative to an otherwise identical structure made by an identical process, but without the washing step. In addition, the properties of the present thin film are generally more predictable than those of films produced from similarly prepared (cyclo)silanes that have not been washed according to the present invention. The present invention advantageously provides semiconducting thin film structures having qualities suitable for use in electronics applications, such as display devices or RF ID tags, while enabling high-throughput manufacturing processes that form such thin films in seconds or minutes, rather than hours or days as with conventional photolithographic processes.