摘要:
A camshaft phaser control system including a camshaft target wheel, the target wheel having first and second teeth for measuring camshaft oscillatory instability. The trailing edge of the first tooth coincides with the negative camshaft oscillation peak, and the trailing edge of the second tooth coincides with the positive camshaft oscillation peak. During each camshaft rotation, each tooth initiates an input signal to generate first and second input signals in known fashion. During crankshaft rotation, a third input signal is generated corresponding to the rotational position of the crankshaft. From these signals, operational camshaft oscillatory instability is computed by an engine monitoring system (EMS). Any deviation from the operational instability while the engine is operating is a direct measurement of oscillatory instability of the camshaft about its nominal holding position. A change in oscillatory instability is inferred as system malfunction, permitting defensive action to be taken by the EMS.
摘要:
The present invention is a method and apparatus to clean an oil control valve for use by an internal combustion engine. The invention causes the oil control valve to execute a cleaning routine when specific entrance criteria are met. This ensures cleaning of the valve to remove contaminants that are wedged, pinched or otherwise trapped on the valve, without interference in the operation of the engine.
摘要:
The present invention provides a method and apparatus to control the rate of change of the variable cam phasing system during transient engine operating conditions. It does this primarily to maintain combustion stability. The invention controls the rate of change of the variable cam phasing system based upon the operating point of the engine, the desired operating point of the engine, and the rate of change of the variable cam phasing system necessary to maintain combustion stability.
摘要:
A method of determining the position of a cam phaser determines and stores an adaptively updated base offset corresponding to the phase offset of a camshaft relative to a crankshaft for a reference or default position of a cam phaser. Thereafter, the phaser position is determined relative to the base offset. Individual base offsets are preferably determined for each tooth of a toothed cam wheel, and stored in a non-volatile memory device. During engine operation, the base offsets are subject to diagnostic testing and adaptive updating, and the updated base offsets are stored in the non-volatile memory at engine shut-down.
摘要:
The present invention provides an improvement over conventional engine controls by providing a method and system that operates a variable valve system immediately subsequent to engine start, and disengages the variable valve system when engine performance is unacceptable. If the variable valve system is disengaged after engine start due to poor engine performance, a time delay occurs to allow the engine to create a sufficient amount of oil pressure to operate the variable valve system.
摘要:
A camshaft phaser control system for reducing rotor positional instability. A phaser system includes a target wheel mounted on the phaser rotor such that during camshaft rotation wheel teeth chop a signal to generate first and second interruption signals indicative of amplitude of rotor instability. An instability monitor is used to monitor the level of instability against predetermined acceptable levels, depending upon engine operating conditions (RPM, temperature). An excessive level of instability is established by engine calibration. When measured instability exceeds a predetermined threshold level for a predetermined period, an instability diagnostic becomes alarmed. A default strategy is used to correct the excessive instability by applying a bias to the phaser control duty cycle. The system continues to monitor the level of instability, and when instability falls below the threshold limit, normal phasing operation is resumed.
摘要:
A standard cam phasing OCV may be employed as a virtual check valve to choke the backflow of oil during negative cam torque conditions, including execution of a duty cycle command in an event-based manner. Normally, OCV duty cycle commands are made on a time basis, but for VCV the duty cycle output change must be synchronized with engine events. A method is disclosed for calculating and delivering the VCV duty cycle so that both time-based and event-based controls are maintained and work together. Phase alignment of response time of the OCV solenoid is based upon cam target wheel edges and is event-based. An initial phase rate vs. phase angle is monitored by the Engine Control Module (ECM). Adjustment of the phase angle is provided to achieve maximum cam position phase rate.
摘要:
A standard cam phasing OCV may be employed as a virtual check valve to choke the backflow of oil during negative cam torque conditions, including execution of a duty cycle command in an event-based manner. Normally, OCV duty cycle commands are made on a time basis, but for VCV the duty cycle output change must be synchronized with engine events. A method is disclosed for calculating and delivering the VCV duty cycle so that both time-based and event-based controls are maintained and work together. Phase alignment of response time of the OCV solenoid is based upon cam target wheel edges and is event-based. An initial phase rate vs. phase angle is monitored by the Engine Control Module (ECM). Adjustment of the phase angle is provided to achieve maximum cam position phase rate.
摘要:
An improved method of estimating the oil temperature of an internal combustion engine models the net heat flow through the oil during operation of the engine based on known engine operating parameters and integrates the net heat flow to update the oil temperature estimate. The net heat flow components include heat added to the oil due to fuel combustion and heat rejected from the oil to the engine coolant and atmospheric air, and are based on heat transfer coefficients that are adjusted to take into account variations in engine speed, vehicle speed and cooling fan operation.
摘要:
An improved method of estimating the oil pressure of an internal combustion engine utilizes a physical model that takes into account both engine speed and engine oil temperature. The oil pressure is estimated as the sum of static and dynamic components, where the dynamic component includes a first portion that primarily models flow-related effects, and a second portion that primarily models temperature-related effects. The constants and temperature-related variables of the physical model are combined to form one constant calibration value, and two temperature-dependent calibration values. The parameters of the physical model provide a starting point for the calibration values, and the calibration values are then tuned during a calibration procedure so that the estimated oil pressure tracks an accurate measure of the oil pressure during both steady-state and transient engine operating conditions.