摘要:
Provided are a top-emitting N-based light emitting device and a method of manufacturing the same. The device includes a substrate, an n-type clad layer, an active layer, a p-type clad layer, and a multi ohmic contact layer, which are sequentially stacked. The multi ohmic contact layer includes one or more stacked structures, each including a modified metal layer and a transparent conductive thin film layer, which are repetitively stacked on the p-type clad layer. The modified metal layer is formed of an Ag-based material.
摘要:
Provided are a top-emitting N-based light emitting device and a method of manufacturing the same. The device includes a substrate, an n-type clad layer, an active layer, a p-type clad layer, and a multi ohmic contact layer, which are sequentially stacked. The multi ohmic contact layer includes one or more stacked structures, each including a modified metal layer and a transparent conductive thin film layer, which are repetitively stacked on the p-type clad layer. The modified metal layer is formed of an Ag-based material.
摘要:
Provided are a reflective electrode and a compound semiconductor light emitting device, such as an LED or an LD, including the same. The reflective electrode, which is formed on a p-type compound semiconductor layer, includes: a first electrode layer forming an ohmic contact with the p-type compound semiconductor layer; a second electrode layer disposed on the first electrode layer and formed of transparent conductive oxide; and a third electrode layer disposed on the second electrode layer and formed of an optical reflective material.
摘要:
A low resistance electrode and a compound semiconductor light emitting device including the same are provided. The low resistance electrode deposited on a p-type semiconductor layer of a compound semiconductor light emitting device including an n-type semiconductor layer, an active layer, and the p-type semiconductor layer, including: a reflective electrode which is disposed on the p-type semiconductor layer and reflects light being emitted from the active layer; and an agglomeration preventing electrode which is disposed on the reflective electrode layer in order to prevent an agglomeration of the reflective electrode layer during an annealing process.
摘要:
Provided are a GaN-based III-V group compound semiconductor light emitting device and a method of fabricating the GaN-based III-V group compound semiconductor light emitting device. The GaN-based III-V group compound semiconductor light emitting device includes: at least an n-type compound semiconductor layer, an active layer, and a p-type compound semiconductor layer, which are disposed between an n-type electrode and a p-type electrode. The p-type electrode includes a first electrode layer which is formed of Ag or an Ag-alloy on the p-type GaN-based compound semiconductor layer and a second electrode which is formed of at least one selected from the group consisting of Ni, Ni-alloy, Zn, Zn-alloy, Cu, Cu-alloy, Ru, Ir, and Rh on the first electrode layer.
摘要:
Provided are a p-type electrode and a III-V group GaN-based compound semiconductor device using the same. The electrode includes a first layer disposed on a III-V group nitride compound semiconductor layer and formed of a Zn-based material containing a solute; and a second layer stacked on the first layer and formed of at least one selected from the group consisting of Au, Co, Pd, Pt, Ru, Rh, Ir, Ta, Cr, Mn, Mo, Tc, W, Re, Fe, Sc, Ti, Sn, Ge, Sb, Al, ITO, and ZnO. The Zn-based p-type electrode has excellent electrical, optical, and thermal properties.
摘要:
A low resistance electrode and a compound semiconductor light emitting device including the same are provided. The low resistance electrode deposited on a p-type semiconductor layer of a compound semiconductor light emitting device including an n-type semiconductor layer, an active layer, and the p-type semiconductor layer, including: a reflective electrode which is disposed on the p-type semiconductor layer and reflects light being emitted from the active layer; and an agglomeration preventing electrode which is disposed on the reflective electrode layer in order to prevent an agglomeration of the reflective electrode layer during an annealing process.
摘要:
Provided are a top-emitting N-based light emitting device and a method of manufacturing the same. The device includes a substrate, an n-type clad layer, an active layer, a p-type clad layer, and a multi ohmic contact layer, which are sequentially stacked. The multi ohmic contact layer includes one or more stacked structures, each including a modified metal layer and a transparent conductive thin film layer, which are repetitively stacked on the p-type clad layer. The modified metal layer is formed of an Ag-based material.
摘要:
Provided are a top-emitting N-based light emitting device and a method of manufacturing the same. The device includes a substrate, an n-type clad layer, an active layer, a p-type clad layer, and a multi ohmic contact layer, which are sequentially stacked. The multi ohmic contact layer includes one or more stacked structures, each including a modified metal layer and a transparent conductive thin film layer, which are repetitively stacked on the p-type clad layer. The modified metal layer is formed of an Ag-based material.
摘要:
Provided are an electrode layer, a light emitting device including the electrode layer, and a method of forming the electrode layer. The electrode layer includes a first electrode layer and a second electrode layer, which are sequentially stacked, and the first electrode layer is formed of indium oxide added by an additive element. Also, the additive element includes at least one selected from the group consisting of Mg, Ag, Zn, Sc, Hf, Zr, Te, Se, Ta, W, Nb, Cu, Si, Ni, Co, Mo, Cr, Mn, Hg, Pr, and La.