摘要:
A process for converting fine catalyst slurried in heavy oil into a coke-like material from which catalytic metals can be recovered comprises mixing fine catalyst slurried in heavy oil with solvent, which causes asphaltenes in the heavy oil to precipitate from the heavy oil; separating fine catalyst and precipitated asphaltenes from the heavy oil and solvent; and converting precipitated asphaltenes to a coke-like material by pyrolizing fine catalyst and precipitated asphaltenes separated from the heavy oil.
摘要:
A process for recovering catalytic metals from fine catalyst slurried in heavy oil comprises pyrolizing fine catalyst slurried in heavy oil to provide one or more lighter oil products and a coke-like material and recovering catalytic metals from the coke-like material.
摘要:
A process for recovering catalytic metals from fine catalyst slurried in heavy oil comprises pyrolizing fine catalyst slurried in heavy oil to provide one or more lighter oil products and a coke-like material and recovering catalytic metals from the coke-like material.
摘要:
A process for converting fine catalyst slurried in heavy oil into a coke-like material from which catalytic metals can be recovered comprises mixing fine catalyst slurried in heavy oil with solvent, which causes asphaltenes in the heavy oil to precipitate from the heavy oil; separating fine catalyst and precipitated asphaltenes from the heavy oil and solvent; and converting precipitated asphaltenes to a coke-like material by pyrolizing fine catalyst and precipitated asphaltenes separated from the heavy oil.
摘要:
A process for producing low pour point diesel and lubricating base oil products by bulk dewaxing a C5 plus Fischer-Tropsch syncrude, hydrofinishing the dewaxed intermediate, and recovering 120 degrees C. plus products having improved properties.
摘要:
The present invention is a process for regenerating a sulfur-contaminated, highly selective, large-pore zeolite catalyst. It comprises a multistep process involving exposure of the catalyst to a combination of oxidizing conditions, reducing conditions and treatment with a halogen acid gas. These conditions are effective to agglomerate a Group VIII metal and remove sulfur. Thereafter, the catalyst is oxychlorinated to redisperse the Group VIII metal over the catalyst surface. A carbon removal step is optionally included.
摘要:
The present invention is a process for regenerating a sulfur-contaminated, highly selective, large-pore zeolite catalyst. It comprises a multistep process involving exposure of the catalyst to a combination of oxidizing conditions, reducing conditions and treatment with a halogen acid gas. These conditions are effective to agglomerate a Group VIII metal and remove sulfur. Thereafter, the catalyst is oxychlorinated to redisperse the Group VIII metal over the catalyst surface. A carbon removal step is optionally included.
摘要:
Reforming to produce aromatics from aliphatics, using a bound zeolite catalyst containing a Group VIII metal such as platinum, has been found to be extremely sensitive to water, even at water concentrations as low as 3 ppm in the feed, unless certain catalysts having a low water sensitivity index are used. The water sensitivity index (WSI) is described and methods for making catalysts with a low WSI are described. The sulfur content of the feed to the reforming/aromatics production process is preferably below 50 parts per billion. The catalyst used in the reforming process is preferably a high crush strength catalyst and is preferably prepared by steps including treating L zeolite with a binding enhancement agent prior to binding with a binder such as silica, silica/alumina or alumina.
摘要:
A process for upgrading a Fischer-Tropsch feedstock which comprises (a) recovering from a Fischer-Tropsch reactor a Fischer-Tropsch wax fraction and a Fischer-Tropsch condensate fraction, wherein the Fischer-Tropsch condensate fraction contains alcohols boiling below about 370° C.; (b) contacting the Fischer-Tropsch condensate fraction with a dehydration catalyst in a dehydration zone under dehydration conditions pre-selected to convert at least some of the alcohols present in said fraction into olefins and recovering a first intermediate effluent from said dehydration zone; (c) pyrolyzing the paraffins in the Fischer-Tropsch wax fraction in a thermal cracking zone under thermal cracking conditions pre-selected to crack the Fischer-Tropsch wax molecules to form olefins and collecting a second intermediate effluent from the thermal cracking zone; (d) passing the first and second intermediate effluents recovered from steps (b) and (c) to an oligomerization zone containing an oligomerization catalyst under oligomerization conditions to form an oligomerization mixture having a higher molecular weight than either of said first and second intermediate effluent; (e) hydrofinishing the oligomerization mixture in a hydrofinishing zone; and (f) recovering from the hydrofinishing zone a C10 plus hydrocarbon product, most preferably a lubricating base oil.
摘要:
Reforming to produce aromatics from aliphatics, using a bond zeolite catalyst containing a Group VIII metal such as platinum, has been found to be extremely sensitive to water, even at water concentrations as low as 3 ppm in the feed, unless certain catalysts having a low water sensitivity index are used. The water sensitivity index (WSI) is described and methods for making catalysts with a low WSI are described. The sulfur content of the feed to the reforming/aromatics production process is preferably below 50 parts per billion. The catalysts used in the reforming process is preferably a high crush strength catalyst and is preferably prepared by steps including treating L zeolite with a binding enhancement agent prior to binding with a binder such as silica, silica/alumina or alumina.