摘要:
The present invention relates to a combustion device for meeting the energy demand of processes for producing light olefins (ethylene and propene) in fluidized-bed catalytic cracking units. Said combustion device is used to burn heating oil and to keep burning the coke deposited on the catalyst, with a view to heating it to meet the energy demand of the reaction, combustion taking place smoothly and uniformly, preventing the formation of hotspots within the catalytic bed and in the dilute phase following combustion (afterburning), thereby minimizing deactivation of the catalyst and the risk of damage to the equipment inside of the combustion device.
摘要:
A combustion device for meeting the energy demand of processes for producing light olefins (ethylene and propene) in fluidized-bed catalytic cracking units. The combustion device is used to burn heating oil and to keep burning the coke deposited on the catalyst, with a view to heating it to meet the energy demand of the reaction, combustion taking place smoothly and uniformly, preventing the formation of hotspots within the catalytic bed and in the dilute phase following combustion (afterburning), thereby minimizing deactivation of the catalyst and the risk of damage to the equipment inside of the combustion device.
摘要:
A process for the fluid catalytic cracking of heavy feeds under a heat balance regime is described, where one or more catalyst coolers external to the regenerator cool a stream of regenerated catalyst. A portion of said stream returns to the regenerator and a portion of the cooled regenerated catalyst is admixed to the non-cooled regenerated catalyst at a temperature substantially lower than the regenerator temperature, said admixture being brought into contact with the hydrocarbon feed to be cracked. As a result, the control of the catalyst circulation is rendered independent from the heat balance of the unit, with minimization of the thermal cracking, and therefore lower coke and fuel gas products.
摘要:
A process is described for maximizing the FCC middle distillates comprising the use of two different converters, operating in a coordinated manner that seeks to maximize the production of LCO for diesel, generating a specified gasoline and reducing fuel oil production. Converter “A” operates with a low contact time in the riser, of 0.2 to 1.5 sec. (preferably from 0.5 to 1.0 sec.) making a higher reaction temperature possible even at low severity, from 510° C. to 560° C. (preferably from 530° C. to 550° C.) and with a catalyst suitable to the maximization of LCO. Converter “B” possesses a high activity catalytic system, suited to cracking naphtha and DO generated in the first converter. Preferably, converter “B” has two separate risers, allowing the reaction temperatures of each to be adjusted independently according to the range most recommended for maximizing the cracking of each of the streams: 530° C. to 560° C. for the DO riser and 540° C. to 600° C. for the naphtha riser. The high-quality LCO stream generated by cracking at low severity in converter “A” is not contaminated by the poorer quality LCO generated by re-cracking the DO in converter “B,” since each converter has its own fractionating tower. The use of low contact time as a route for reducing severity in converter “A” geared towards the production of better quality LCO allows it to operate with a higher reaction temperature for the same LCO conversion and quality level, entailing greater operating reliability for the unit, and providing benefits for the heat balance of the converter. In existing units, the improvement in the heat balance provides leeway to the air blower via increased batch temperature, and makes room for processing more residual batches.
摘要:
A process is described for catalytic cracking of hydrocarbon feedstocks from petroleum refining which increases substantially the yields of light olefins. The process limits the extreme conditions to a first reaction section and introduces a stream of cooling fluid above the feedstock injection point so as to maintain a second reaction section under cracking conditions which produce light olefins propene and ethene, and inhibits reactions undesirable for the process.
摘要:
A process for the fluid catalytic cracking of mixed hydrocarbon feeds from different sources is described, such as feeds A and B of different crackability, the process being especially directed to obtaining light fractions such as LPG and comprising injecting feed A in the base of the riser reactive section and feed B, of lower crackability, at a height between 10% and 80% of the riser, with feed B comprising between 5% and 50% of the total processed feed. The process requires that the feeds present differences in the contaminant content, improved dispersion of feeds A and B and feed B injection temperature same or higher than that of feed A.
摘要:
An improved cyclone system for disengaging solid and gaseous particles in fluid catalytic cracking (FCC) processes with reduced coke formation in disengager vessels, without favoring release of the disengaged catalyst into cyclones in subsequent stages, said system comprising legless cyclones 42 fitted with external collector pipes 43, is described. The collector pipes 43 optimize the purge of gases coming from the disengager vessel 49, reducing the time the hydrocarbons remain inside the disengager vessel 49, thus preventing overcracking and subsequent coke formation. Positioning of the external collector pipes 43 prevents release of the disengaged catalyst into cyclones in subsequent stages. The present invention also relates to a process and device for disengaging solid and gaseous particles in fluid catalytic cracking (FCC) processes, reducing coke formation in disengager vessels and minimizing the release of catalyst into consecutive stages, said process and device being part of the system of the present invention.
摘要:
A process is described for catalytic cracking of hydrocarbon feedstocks from petroleum refining which increases substantially the yields of light olefins. The process limits the extreme conditions to a first reaction section and introduces a stream of cooling fluid above the feedstock injection point so as to maintain a second reaction section under cracking conditions which produce light olefins propene and ethene, and inhibits reactions undesirable for the process.
摘要:
A separator comprises a separation chamber (1) with at least one inlet (11a) in its upper part, a solids outlet (12) in its lower part and two outlet pipes (2 and 3) for fractions of gas. Also described is a method which the separator uses, with the fractions of gas being sucked out in two separation zones generated inside the chamber, one with reverse flow and the other with unidirectional flow.
摘要:
A separator comprises a separation chamber (1) with at least one inlet (11a) in its upper part, a solids outlet (12) in its lower part and two outlet pipes (2 and 3) for fractions of gas. Also described is a method which the separator uses, with the fractions of gas being sucked out in two separation zones generated inside the chamber, one with reverse flow and the other with unidirectional flow.