摘要:
Light olefins may be produced from hydrocarbons by a method including passing a hydrocarbon feed stream into one or more feed inlets of a reactor, with one or more co-feeds of steam, a recycle stream or oxygenates. The reactor may include an upper reactor portion defining an upper reaction zone and a lower reactor portion defining a lower reaction zone. The catalyst may move in a generally downward direction through the upper reactor portion and the lower reactor portion, and the hydrocarbon feed stream may move in a generally upward direction through the lower reactor portion and upper reactor portion such that the hydrocarbon feed stream and the catalyst move with a counter-current orientation. Contacting the catalyst with the hydrocarbon feed stream may crack one or more components of the hydrocarbon feed stream and form a hydrocarbon product stream.
摘要:
A process for steam cracking a whole crude including a volatilization step performed to maintain a relatively large hydrocarbon droplet size. The process may include contacting a whole crude with steam to volatilize a portion of the hydrocarbons, wherein the contacting of the hydrocarbon feedstock and steam is conducted at an initial relative velocity of less than 30 m/s, for example. The resulting vapor phase, including volatilized hydrocarbons and steam may then be separated from a liquid phase comprising unvaporized hydrocarbons. The hydrocarbons in the vapor phase may then be forwarded to a steam pyrolysis reactor for steam cracking of the hydrocarbons in the vapor phase.
摘要:
Processes herein may be used to thermally crack various hydrocarbon feeds, and may eliminate the refinery altogether while making the crude to chemicals process very flexible in terms of crude. In embodiments herein, crude is progressively separated into at least light and heavy fractions. Depending on the quality of the light and heavy fractions, these are routed to one of three upgrading operations, including a fixed bed hydroconversion unit, a fluidized catalytic conversion unit, or a residue hydrocracking unit that may utilize an ebullated bed reactor. Products from the upgrading operations may be used as feed to a steam cracker.
摘要:
A multi-stage process for reducing the environmental contaminants in a ISO8217 compliant Feedstock Heavy Marine Fuel Oil involving a core desulfurizing process and an Oxidative desulfurizing process as either a pre-treating step or post-treating step to the core process. The Product Heavy Marine Fuel Oil is compliant with ISO 8217A for residual marine fuel oils and has a sulfur level has a maximum sulfur content (ISO 14596 or ISO 8754) between the range of 0.05% wt. to 0.5% wt. A process plant for conducting the process is also disclosed.
摘要:
The invention relates to a process for producing C2 and C3 hydrocarbons, comprising a) subjecting a mixed hydrocarbon carbon stream comprising a middle distillate to first hydrocracking in the presence of a first hydrocracking catalyst to produce a first hydrocracking product stream, b) subjecting a second hydrocracking feed stream to second hydrocracking in the presence of a second hydrocracking catalyst to produce a second hydrocracking product stream, wherein the second hydrocracking is more severe than the first hydrocracking and c) subjecting a C4 hydrocracking feed stream to C4 hydrocracking optimized for converting C4 hydrocarbons into C3 hydrocarbons in the presence of a C4 hydrocracking catalyst to obtain a C4 hydrocracking product stream, wherein the C4 hydrocracking is more severe than the second hydrocracking, wherein the first hydrocracking product stream, the second hydrocracking product stream and the C4 hydrocracking product stream are fed to a separation system which provides —the second hydrocracking feed stream separated from the first hydrocracking product stream, —the C4 hydrocracking feed stream separated from the second hydrocracking product stream, —a first recycle stream to be recycled back to the first hydrocracking, —a second recycle stream to be recycled back to the second hydrocracking, —a third recycle stream to be recycled back to the C4 hydrocracking, —a hydrogen recycle stream of H2 or H2 and C1 to be recycled back to the first hydrocracking, the second hydrocracking and/or the C4 hydrocracking and —a C2 and C3 product stream of C3− hydrocarbons, wherein the second hydrocracking feed stream is a stream of C12− hydrocarbons excluding C10-C12 hydrocarbons having di-ring structures, wherein the first recycle stream is a stream of C13+ and C10-C12 hydrocarbons having di-ring structures, wherein the C4 hydrocracking feed stream is a stream of C5−, C4− or iC4−, wherein the second recycle stream is a stream of C6+, C5+ or nC4+ 30 wherein the third recycle stream is a stream of nC4+ or C4+.
摘要:
A process for reducing the environmental contaminants in a ISO8217 compliant Feedstock Heavy Marine Fuel Oil, the process involving: mixing a quantity of the Feedstock Heavy Marine Fuel Oil with a quantity of Activating Gas mixture to give a feedstock mixture; contacting the feedstock mixture with one or more catalysts to form a Process Mixture from the feedstock mixture; separating the Product Heavy Marine Fuel Oil liquid components of the Process Mixture from the gaseous components and by-product hydrocarbon components of the Process Mixture and, discharging the Product Heavy Marine Fuel Oil. The Product Heavy Marine Fuel Oil is compliant with ISO 8217A for residual marine fuel oils and has a sulfur level has a maximum sulfur content (ISO 14596 or ISO 8754) between the range of 0.05% wt. to 0.50% wt. The Product Heavy Marine Fuel Oil can be used as or as a blending stock for an ISO 8217 compliant, IMO MARPOL Annex VI (revised) compliant low sulfur or ultralow sulfur heavy marine fuel oil. A device for conducting the process is also disclosed.
摘要:
A preparation method for modified molecular sieve and a modified molecular sieve-containing catalytic cracking catalyst. The preparation method comprises: mixing molecular sieve slurry, a compound solution containing ions of group IIIB metals of the periodic table of elements, organic complexing agent and/or dispersing agent and precipitating agent to obtain mixed slurry containing molecular sieve and precipitates of group IIIB elements in the periodic table of elements; and drying, and roasting or not roasting to obtain molecular sieve modified by the group IIIB elements. A weight ratio of group IIIB elements calculated based on oxides to molecular sieve dry basis is equal to (0.3-10):100, a molar ratio of organic complexing agent to ions of group IIIB metals is equal to (0.3-10):1, and a molar ratio of dispersing agent to the ions of group IIIB metals is equal to (0.2-16):1. Also related to is the catalytic cracking catalyst containing the modified molecular sieve prepared according to the method. The molecular sieve prepared by the method or the catalytic cracking catalyst containing same has good activity stability and heavy metal pollution resistance.
摘要:
A hydroprocessing catalyst composition that comprises a metal-incorporated support having incorporated therein a metal component and a chelating agent, and, further comprising a polar additive. The catalyst composition is prepared by incorporating in a single step at least one metal component and a chelating agent into a support material to form a metal-incorporated support followed by drying the metal-incorporated support and thereafter incorporating therein a polar additive.
摘要:
Methods are provided for hydroprocessing a feed (such as hydrotreating, hydrocracking, or hydrofining a feed) to generate a product with a reduced or minimized aromatics content relative to the severity of the hydroprocessing conditions. In some types of hydroprocessing applications, it can be desirable to select the severity of hydroprocessing conditions to achieve a desired level of removal for sulfur, a desired level for removal of nitrogen, and/or a desired level for increasing the viscosity index of a feed. The severity for heteroatom removal and/or viscosity index uplift can also correspond to an amount of conversion of a feed to lower boiling point products, so the lowest severity conditions suitable for achieving a product quality can be desirable. By improving the aromatics saturation during hydroprocessing, the severity of subsequent aromatics saturation processes can be reduced.
摘要:
The stability of distillate type jet fuels is improved by cathodic hydrogenation in an electrolytic cell with a proton permeable membrane separating cathode and anode compartments; a source of hydrogen is oxidized in the anode compartment to form protons which permeate the membrane to effect a cathodic reduction of the nitrogenous components of the fuel in the cathode compartment.