摘要:
A portable data processing system and method are disclosed for improving cooling of a microprocessor included within the system. The portable data processing system includes a base housing for housing a CPU and a display housing for housing a display. A heat sink is established within the base housing. The heat sink is formed from a highly conductive composite material. A heat dissipater is established within the display housing. The heat dissipater is comprised of a highly conductive composite material. The heat dissipater and heat sink are capable of receiving a heat pipe. Heat is transferred from the heat sink to the heat dissipator utilizing the heat pipe. In a second embodiment, the portable system is docked with a docking station, and a heat probe is included which is utilized to dissipate additional heat from the microprocessor to a large fan sink included within the docking station.
摘要:
An arrangement and method for enhancing the cooling capacity of portable personal computers. More particularly, the arrangement is employed for increasing the cooling capacity of portable personal computers, particularly such as laptop or notebook computers, wherein the computer possesses a keyboard housing having the rear edge thereof hingedly connected with the bottom of an openable display unit or panel, and containing heat-generating computer electronics, from which heat is removed through the intermediary of heat pipes which are hingedly connected with at least one heat dissipator located in the display unit.
摘要:
A notebook computer has a base and a cover that is pivotally mounted to the base with a hinge. An integrated circuit chip is mounted to the base and has one end of a heat pipe attached to it or to an associated heat dissipation device. The other end of the heat pipe lies along the hinge. A spreader plate is mounted in the cover and attached to the other end of the heat pipe to form a nested, rotational joint. One end of the plate is located along the hinge and formed into a slotted cylinder. The heat pipe is pressed into the slot to form the joint which is tight around the heat pipe, but still allows it to rotate to accommodate the pivot motion of the cover. A retainer may be incorporated into the design to further enhance the strength of the joint and assure thermal continuity. The retainer is a hollow cylinder with an axial slit through which the plate extends.
摘要:
A battery having an outer casing and an anode/cathode assembly within that casing, wherein the anode/cathode assembly includes plural anodes and cathodes and electrolyte therebetween. The battery has a pressure relief feature associated with the casing and a channel preservation element sufficiently rigid to preserve at least one gas passageway to the pressure relief feature under conditions of anode/cathode assembly warpage. Thus the gas in the passageway will not become impeded by anode/cathode assembly warpage.
摘要:
A battery having an outer casing and an anode/cathode assembly within that casing, wherein the anode/cathode assembly includes plural anodes and cathodes and electrolyte therebetween. The battery has a pressure relief feature associated with the casing and a channel preservation element sufficiently rigid to preserve at least one gas passageway to the pressure relief feature under conditions of anode/cathode assembly warpage. Thus the gas in the passageway will not become impeded by anode/cathode assembly warpage.
摘要:
Devices and their subassemblies typically undergo stresses during manufacturing and testing processes and during general use. To provide visual indication of stress or strain levels endured, a preferred embodiment includes frangible material deposited on particular isolated areas of devices and/or their subassemblies. The frangible material, when applied according to one methodical embodiment, provides visible indication of overstrain as cracks in the frangible material deposits, and of non overstrain when cracks are not visible.
摘要:
A method can include receiving a potential value of a negative electrode of a lithium-ion cell and, for a cell charging process for the lithium-ion cell, adjusting a constant voltage phase voltage based at least in part on the potential value of the negative electrode. Various other apparatuses, systems, methods, etc., are also disclosed.
摘要:
A lithium-ion battery package can include flexible foil, a first conductor patch exposed on the flexible foil, a second conductor patch exposed on the flexible foil, a folded orientation of the flexible foil that includes a contact between the first conductor patch and the second conductor patch, and an expanded orientation of the flexible foil that includes a space between the first conductor patch and the second conductor patch. Various other apparatuses, systems, methods, etc., are also disclosed.
摘要:
A battery is disclosed that includes two contact areas, an electrolyte, and a conductivity mechanism to increase electron conductivity internal to the battery between the two contact areas that, in turn, deactivates the battery. In one embodiment, the conductivity mechanism is triggered external to the battery. In another embodiment, the conductivity mechanism utilizes deactivator material to increase electron conductivity through the electrolyte to deactivate the battery. In yet another embodiment, the conductivity mechanism creates multiple shorts between the two contact areas to deactivate the battery.
摘要:
A battery is disclosed for reducing the severity of thermal runaway. The battery includes an anode sheet, a cathode sheet, and a separator situated between the anode sheet and the cathode sheet. The anode sheet, cathode sheet, and separator may be put together in a jelly roll configuration. The battery also includes internal fuses that subdivide the anode sheet, cathode sheet, or both, into electrically separate areas. The fuses are activated during thermal runaway and isolate separate areas of the sheet, thus reducing the total energy available during thermal runaway and reducing the severity. The fuses may be positive temperature coefficient (PTC) fuses that conduct current at normal operating temperatures but stop conducting current at temperatures above normal operating temperatures. The fuses may be placed in the current collectors, or directly into the anode sheet and cathode sheet themselves. In certain embodiments, the fuses may stop conducting when they reach a predefined threshold temperature or when an excessively large current passes through the fuses.