摘要:
A light source comprising a light engine (10), especially with at least one LED and/or at least one laser light emitting element, and further comprising a light guide (11) and an out-coupling structure (12) is proposed. By this, a flexible scheme to tailor the source size and radiation characteristic of an LED- or laser based system is provided. The size and the position of the out-coupling structure (12) can be chosen to be comparable to the size and position of the filament or arc of a conventional light source like an incandescent-, halogen- or gas discharge burner. The disclosed LED/laser light source is retrofit from an optical point of view so that it can replace a conventional light source like an incandescent-, halogen- or gas discharge bulb or burner in an illumination device.
摘要:
A light source comprising a light engine (10), especially with at least one LED and/or at least one laser light emitting element, and further comprising a light guide (11) and an out-coupling structure (12) is proposed. By this, a flexible scheme to tailor the source size and radiation characteristic of an LED- or laser based system is provided. The size and the position of the out-coupling structure (12) can be chosen to be comparable to the size and position of the filament or arc of a conventional light source like an incandescent-, halogen- or gas discharge burner. The disclosed LED/laser light source is retrofit from an optical point of view so that it can replace a conventional light source like an incandescent-, halogen- or gas discharge bulb or burner in an illumination device.
摘要:
Proposed is a light-emitting apparatus 200,300,400, comprising a semiconductor light emitting device 220,320,420 and a transparent ceramic body 230,330,430 comprising a wavelength converting material positioned in light receiving relationship to the semiconductor device. The light-emitting apparatus is characterized in that the side surfaces 233,333,433 of the ceramic body 230,330,430 are at an oblique angle 234,334,434 relative its bottom surface 231,331,431. This is especially advantageous to unlock the wave-guide modes inside the body 230,330,430. Consequently the total flux emitted from the light-emitting apparatus 200,300,400 can be enhanced considerably. Alternatively, the brightness of the top surface 232,332,432 of the ceramic body 230,330,430 can be enhanced considerably.
摘要:
A system comprises means (PL; MI) for projecting an image light beam (ILB) on a projection area (PA) for display of an image (PI) on the projection area (PA), and means (1) for generating an ambient light beam (ALB; ALB1, ALB2) and comprising: an ambient light source (LS; LS1, LS2) for generating ambient light, a collimator (CO) or a light-guide (LG1, LG2) for receiving the ambient light to supply the ambient light beam (ALB; ALB1, ALB2), and a reflector (RF; RF1, RF2) for reflecting the ambient light beam (ALB; ALB1, ALB2) towards the projection area (PA) to obtain an ambient lighting area (ALI) adjacent the image (PI).
摘要:
Proposed is a light-emitting apparatus 200,300,400, comprising a semiconductor light emitting device 220,320,420 and a transparent ceramic body 230,330,430 comprising a wavelength converting material positioned in light receiving relationship to the semiconductor device. The light-emitting apparatus is characterized in that the side surfaces 233,333,433 of the ceramic body 230,330,430 are at an oblique angle 234,334,434 relative its bottom surface 231,331,431. This is especially advantageous to unlock the wave-guide modes inside the body 230,330,430. Consequently the total flux emitted from the light-emitting apparatus 200,300,400 can be enhanced considerably. Alternatively, the brightness of the top surface 232,332,432 of the ceramic body 230,330,430 can be enhanced considerably.
摘要:
A system comprises means (PL; MI) for projecting an image light beam (ILB) on a projection area (PA) for display of an image (PI) on the projection area (PA), and means (1) for generating an ambient light beam (ALB; ALB1, ALB2) and comprising: an ambient light source (LS; LS1, LS2) for generating ambient light, a collimator (CO) or a light-guide (LG1, LG2) for receiving the ambient light to supply the ambient light beam (ALB; ALB1, ALB2), and a reflector (RF; RF1, RF2) for reflecting the ambient light beam (ALB; ALB1, ALB2) towards the projection area (PA) to obtain an ambient lighting area (ALI) adjacent the image (PI).
摘要:
A front projector (FP) comprises an image generating device (DP) which generates an image in accordance with an input display signal (IDS). A projection lens (PL) projects the image to obtain a projected image (PL) on an projection area (IPA). At least one light source (LS1, LS2; L1, L2, L3) generates at least one ambient light beam (ALB1, ALB2) which is projected via said same projection lens (PL) to obtain an ambient light image (ALI1, ALI2) at least partly flanking said projected image (PI).
摘要:
An LED module is described with a base 10 made out of a heat conducting material. An LED element (32) is arranged in a cavity (11) of the base. A collimator reflector (70) is formed by reflective surfaces (24, 64, 66a). Three of these reflective surfaces (66a, 66b, 64) are provided on a plastic insert (60) received in the cavity (11). A further reflective surface (24) is provided on the base (10) itself. This surface (24) has a straight border line (50). The collimator reflector (70) is arranged to reflect light from the LED (32) so that a cut-off (72) is formed by the straight border line (50). By thus integrating the cut-off, as the most critical optical element, into the base (10) itself, high accuracy is achieved.
摘要:
An LED module is described with a base 10 made out of a heat conducting material. An LED element (32) is arranged in a cavity (11) of the base. A collimator reflector (70) is formed by reflective surfaces (24, 64, 66a). Three of these reflective surfaces (66a, 66b, 64) are provided on a plastic insert (60) received in the cavity (11). A further reflective surface (24) is provided on the base (10) itself. This surface (24) has a straight border line (50). The collimator reflector (70) is arranged to reflect light from the LED (32) so that a cut-off (72) is formed by the straight border line (50). By thus integrating the cut-off, as the most critical optical element, into the base (10) itself, high accuracy is achieved.
摘要:
A system comprises a light source and an electrode device (20, 30, 60). The light source comprises a base (40) with a base surface (42) on which at least two contact elements are provided. The electrode device has at least two electrodes (23, 24, 34, 35), preferably of ferromagnetic or electromagnetic material and having a different polarity during operation. Adjacent electrodes are arranged at a predetermined electrode distance. Both electrodes are provided in one layer and are arranged in an interdigitated configuration. The light source has at least two, but preferably four contact elements (43, 53, 63) arranged at a mutual spacing which is essentially compatible with said electrode distance.