摘要:
Solutions for forming a semiconductor including an oxide MEMS beam are disclosed. In one embodiment, a method of forming a beam within a sealed cavity includes: depositing a lower insulator layer comprising one or more layers; depositing an upper insulator layer over the first insulator layer, the upper insulator layer comprising one or more layers, wherein a composite stress of the upper insulator layer is different than a composite stress of the lower insulator layer.
摘要:
In one embodiment, a semiconductor structure includes a beam positioned within a sealed cavity, the beam including: an upper insulator layer including one or more layers; and a lower insulator layer including one or more layers, wherein a composite stress of the upper insulator layer is different than a composite stress of the lower insulator layer, such that the beam bends.
摘要:
Embodiments of the invention provide methods of sealing a micro electromechanical systems (MEMS) cavity and devices resulting therefrom. A first aspect of the invention provides a method of sealing a micro electromechanical systems (MEMS) cavity in a substrate, the method comprising: forming in a substrate a cavity filled with a sacrificial material; forming a lid over the cavity; forming at least one vent hole over the lid extending to the cavity; removing the sacrificial material from the cavity; depositing a first material onto the lid such that a size of at least one vent hole at a surface of the substrate is reduced but not sealed; and depositing a second material onto the first material to seal the at least one vent hole, wherein a MEMS cavity within the substrate and beneath the at least one vent hole substantially retains a pressure at which the at least one vent hole is sealed by the second material.
摘要:
Aspects of the invention provide a method of forming a bipolar junction transistor. The method includes: providing a semiconductor substrate including a uniform silicon nitride layer over an emitter pedestal, and a base layer below the emitter pedestal; applying a photomask at a first end and a second end of a base region; and performing a silicon nitride etch with the photomask to simultaneously form silicon nitride spacers adjacent to the emitter pedestal and exposing the base region of the bipolar junction transistor. The silicon nitride etch may be an end-pointed etch.
摘要:
Aspects of the invention provide a method of forming a bipolar junction transistor. The method includes: providing a semiconductor substrate including a uniform silicon nitride layer over an emitter pedestal, and a base layer below the emitter pedestal; applying a photomask at a first end and a second end of a base region; and performing a silicon nitride etch with the photomask to simultaneously form silicon nitride spacers adjacent to the emitter pedestal and exposing the base region of the bipolar junction transistor. The silicon nitride etch may be an end-pointed etch.
摘要:
A method of manufacturing a semiconductor structure includes varying local chemical mechanical polishing (CMP) abrading rates of an insulator film by selectively varying a carbon content of the insulator film.