摘要:
This disclosure provides crystalline flavonoid or flavanone isomerases, isolated non-native isomerase having the structural coordinates of said crystalline isomerase, and nucleic acids encoding such non-native isomerase. Also disclosed are methods of predicting the activity and/or substrate specificity of a putative isomerase, methods of identifying potential isomerase substrates, and methods of identifying potential isomerase inhibitors.
摘要:
This disclosure provides crystalline flavonoid or flavanone isomerases, isolated non-native isomerase having the structural coordinates of said crystalline isomerase, and nucleic acids encoding such non-native isomerase. Also disclosed are methods of predicting the activity and/or substrate specificity of a putative isomerase, methods of identifying potential ismerase substrates, and methods of identifying potential isomerase inhibitors.
摘要:
The present invention comprises crystalline polyketide synthases, isolated non-native polyketide synthases having the structural coordinates of said crystalline polyketide synthases, and nucleic acid encoding such non-native polyketide synthases. Also disclosed are methods of producing mutant polyketide synthases, and methods of altering the activity and/or substrate specificity of putative polyketide synthases.
摘要:
The present invention comprises crystalline polyketide synthases, isolated non-native polyketide synthases having the structural coordinates of said crystalline polyketide synthases, and nucleic acid encoding such non-native polyketide synthases. Also disclosed are methods of producing mutant polyketide synthases, and methods of altering the activity and/or substrate specificity of putative polyketide synthases.
摘要:
The present invention comprises crystalline polyketide synthases, isolated non-native polyketide synthases having the structural coordinates of said crystalline polyketide synthases, and nucleic acids encoding such non-native polyketide synthases. Also disclosed are methods of producing mutant polyketide synthases, and methods of altering the activity and/or substrate specificity of putative polyketide synthases.
摘要:
Recombinant fusion proteins in which intermediates are covalently bound to the fusion proteins and transferred between domains of the fusion proteins are provided. The fusion proteins include proteins having type I polyketide or fatty acid synthase domains fused with type III polyketide synthase domains. Methods of making such recombinant fusion proteins and methods using such proteins to produce polyketide and other products are described.
摘要:
The present invention comprises crystalline polyketide synthases, isolated non-native polyketide synthases having the structural coordinates of said crystalline polyketide synthases, and nucleic acid encoding such non-native polyketide synthases. Also disclosed are methods of producing mutant polyketide synthases, and methods of altering the activity and/or substrate specificity of putative polyketide synthases.
摘要:
Crystal structure information is used to make substrate-switched amino acid ammonia lyase enzymes, including TALs, PALs and HALs. Related methods, systems, compositions, cells and transgenic organisms are provided.
摘要:
Recombinant fusion proteins in which intermediates are covalently bound to the fusion proteins and transferred between domains of the fusion proteins are provided. The fusion proteins include proteins having type I polyketide or fatty acid synthase domains fused with type III polyketide synthase domains. Methods of making such recombinant fusion proteins and methods using such proteins to produce polyketide and other products are described.
摘要:
The present invention provides the structure of the enzyme 4-diphosphocytidyl-2-C-methylerythritol (CDP-ME) synthase, a member of the cytidyltransferase family of enzymes from Escherichia coli. CDP-ME is a critical intermediate in the mevalonate-independent pathway for isoprenoid biosynthesis in a number of prokaryotic organisms, in algae, in the plastids of plants, and in the malaria parasite. Since vertebrates synthesize isoprenoid precursors using a mevalonate pathway, CDP-ME synthase and other enzymes of the mevalonate-independent pathway for isoprenoid production represent attractive targets for the structure-based design of selective antibacterial, herbicidal, and antimalarial drugs. Accordingly, the present invention provides methods for screening for compounds that inhibit enzymes of the mevalonate-independent pathway and pharmaceutical compositions and antibacterial formulations thereof. Further provided are methods of inhibiting the enzymes of the pathway and bacterial terpenoid synthesis and methods for treating a subject suffering from a bacterial infection.