摘要:
A thermoelectric material having enhanced Seebeck coefficient is characterized by a microstructure comprising nanoscale Pb inclusions dispersed in matrix substantially composed of PbTe. The excess Pb is obtained either by adding Pb in an amount greater than the stoichiometric amount needed to form PbTe, or by adding an additive effective to getter Te so as to produce the desired excess. The method is generally applicable to enhance thermoelectric properties of compounds of Pb, Sn or Ge, and Te, Se, or S.
摘要:
For increased sensitivity, an improved position sensor includes a magnetic circuit in which the stationary portion includes a permanent magnet whose width is optimally 1.5 times the tooth pitch of the exciter portion of the sensor and the magnet face proximate the exciter includes a thin layer of ferromagnetic material over which is centered a narrow magnetic sensing element, such as a magnetoresistor. The sensing element has a width typically less than the tooth width. The sensing element includes a thin film of a monocrystalline semiconductive material, preferably having only a moderate bulk mobility and a larger band gap, such as indium arsenide. Current carriers flow along the length of the thin film in a surface accumulation layer, effective to provide a significant apparent increase in mobility and conductivity of said semiconductive material, and an actual increase in magnetic sensitivity and temperature insensitivity. The flux density is typically applied by appropriate magnet thickness or choice of magnet material without the need of a flux guide.
摘要:
In one embodiment, a sensor assembly has a sensor housing forming a fluid chamber having a surface defining a normal axis. A magnetostrictive (MS) core that defines a central longitudinal axis is subjected to stress induced by pressurized fluid in the chamber. An excitation coil is coupled to the core to induce a magnetic flux therein. The central longitudinal axis of the core is coaxial with the axis normal to the fluid chamber surface.
摘要:
System and methods for determining a concentration of urea in an aqueous solution disposed in a container are provided. The system includes an infrared light source and an infrared light detector. The system further includes a window disposed proximate to an aperture of the container, such that the infrared light at a first light intensity level from the infrared light source passes through a first portion of the window toward the aqueous solution. A portion of the infrared light is absorbed by the aqueous solution, and a second portion of the infrared light is reflected from the aqueous solution and through a second portion of the window. The infrared light detector system generates a first signal indicative of a second light intensity level based on the second portion of infrared light. The system further includes a microprocessor that determines the second light intensity level based on the first signal, and further determines a urea concentration based on the first and second light intensity levels.
摘要:
A chemical vapor sensor is provided that passively measures a chemical species of interest with high sensitivity and chemical specificity. In an aspect, ethanol vapor in a vehicle cabin is measured, and sufficient sensitivity is provided to passively detect a motor vehicle driver that exceeds a legal limit of blood alcohol concentration (BAC), for use with vehicle safety systems. The sensor can be situated in an inconspicuous vehicle cabin location and operate independently without requiring active involvement by a driver. A vapor concentrator is utilized to amplify a sampled vapor concentration to a detectible level for use with an infrared (IR) detector. In an aspect, in comparison to conventional chemical sensors, the sensitivity of detection of ethanol vapor is increased by a factor of about 1,000. Further, a single channel of infrared detection is utilized avoiding spurious infrared absorption and making the chemical vapor sensor less costly to implement.
摘要:
In one embodiment, a sensor assembly has a magnetostrictive (MS) element and a sensor housing defining at least one active wall. A sensor channel is disposed on a first side of the active wall, with the MS element being disposed in the sensor channel and closely received therein. A fluid is on a second side of the active wall, and the active wall is the wall through which stress from pressure of the fluid causes stress on the MS element. The sensor channel defines an axis parallel to the active wall, and the MS element is positioned adjacent the active wall by sliding the MS element into an end of the sensor channel in a direction parallel to the active wall.
摘要:
In one embodiment, a sensor assembly has a sensor housing forming a fluid chamber and a magnetostrictive wire that undergoes stress induced by fluid in the chamber. The wire defines opposed ends, each being associated with a respective terminal. Respective hermetic seals penetrate the housing and are coupled to the respective terminals.
摘要:
In one embodiment a sensor assembly has a magnetostrictive (MR) element in a sensor housing. The MR element has a sensing part engaged with a wire coil and a frusto-conical sealing part juxtaposed with a fluid the pressure of which is to be sensed.
摘要:
A brake system including a brake pad shaped and located to apply pressure to a brake rotor and an actuator shaped and located to apply pressure to the brake pad to cause the brake pad to apply pressure to the rotor. The system further includes a sensor material which varies in resistance when the actuator applies pressure to the brake pad, wherein the sensor material include an electrically insulating material with electrically conductive particles distributed therein. The system further includes a controller operatively coupled to the sensor material to detect a change in resistance of the sensor material.
摘要:
A semiconductor film is provided characterized by having high carrier mobility and carrier density. The semiconductor film is doped with the rare-earth element erbium so as to improve its temperature stability. The semiconductor film is thereby particularly suited for use as a magnetic field sensing device, such as a Hall effect sensor or magnetoresistor. The semiconductor film is formed from a narrow-gap Group III-V compound, preferably indium antimonide, which is n-doped with the erbium to provide an electron density sufficient to increase temperature stability. In particular, the semiconductor film is characterized by a nini-structure which is generated using a slab-doping technique. The slab-doping process encompasses the growing of alternating layers of doped and undoped layers of the Group III-V compound, with the doped layers being substantially thinner than the undoped layers, and preferably as thin as one atomic plane. The electron density establishes an average extrinsic electron density within the combined undoped and doped layers of the Group III-V compound. The density of erbium in the doped layers is preferably sufficient to yield an average extrinsic electron density of between about 1.times.10.sup.16 cm.sup.-3 and about 1.times.10.sup.18 cm.sup.-3, while also achieving a carrier mobility greater than about 30,000 cm.sup.-2 /V-s at room temperature.
摘要翻译:提供一种半导体膜,其特征在于具有高载流子迁移率和载流子密度。 半导体膜掺杂有稀土元素铒,以提高其温度稳定性。 因此,半导体膜特别适用于诸如霍尔效应传感器或磁敏电阻器的磁场感测装置。 半导体膜由窄间隙III-V族化合物形成,优选锑化锑,其与铒掺杂,以提供足以提高温度稳定性的电子密度。 特别地,半导体膜的特征在于使用平板掺杂技术产生的尼尼结构。 板状掺杂工艺包括III-V族化合物的掺杂层和未掺杂层的交替层的生长,其中掺杂层基本上比未掺杂层更薄,并且优选地薄至一个原子平面。 电子密度在III-V族化合物的组合未掺杂和掺杂层中建立了平均的外在电子密度。 掺杂层中铒的密度优选足以产生约1×10 16 cm -3至约1×10 18 cm -3之间的平均非本征电子密度,同时在室温下也达到大于约30,000cm-2 / Vs的载流子迁移率 。