摘要:
An electrolyte for a magnesium cell contains a solute, which is phenoxyl-Mg—Al-halogen complex, and an ether solvent. With respect to the entire electrolyte, the solute concentration is 0.2 to 1 mol/L. The electrolyte is capable of staying stable in the air. Also provided is a magnesium cell containing the electrolyte.
摘要:
An electrolyte for a magnesium cell contains a solute, which is phenoxyl-Mg—Al-halogen complex, and an ether solvent. With respect to the entire electrolyte, the solute concentration is 0.2 to 1 mol/L. The electrolyte is capable of staying stable in the air. Also provided is a magnesium cell containing the electrolyte.
摘要:
A magnesium secondary battery includes a positive electrode, a negative electrode, a separator membrane and an electrolytic solution. The electrolytic solution includes nitrogen-containing heterocyclic magnesium halide and an organic ether solvent.
摘要:
A magnesium battery electrolyte with a wide electrochemical window was developed. The electrolyte includes an organic boron magnesium salt and an aprotic polar solvent. The organic boron magnesium salt is an organic boron magnesium salt complex formed by compounding a Lewis acid with a boron center and a magnesium-containing Lewis base R′2-nMgXn, wherein n is 0 or 1, R and R′ respectively represent a fluoroaryl group, an alkylated aryl group, an aryl group, an alkyl group, or a pyrrolidinyl group, and X represents a halogen. The solvent is an aprotic polar solvent such as ether or a mixed solvent thereof. The concentration of the electrolyte is 0.25 to 1 mol/L, and the electric conductivity is 0.5 to 10 mS/cm. The electrolyte allows reversible deposition/dissolution of magnesium, features good cycling stability, and has a wide electrochemical window (>3.0V vs.Mg/Mg2+).
摘要:
A magnesium battery electrolyte with a wide electrochemical window was developed. The electrolyte includes an organic boron magnesium salt and an aprotic polar solvent. The organic boron magnesium salt is an organic boron magnesium salt complex formed by compounding a Lewis acid with a boron center and a magnesium-containing Lewis base R′2-nMgXn, wherein n is 0 or 1, R and R′ respectively represent a fluoroaryl group, an alkylated aryl group, an aryl group, an alkyl group, or a pyrrolidinyl group, and X represents a halogen. The solvent is an aprotic polar solvent such as ether or a mixed solvent thereof. The concentration of the electrolyte is 0.25 to 1 mol/L, and the electric conductivity is 0.5 to 10 mS/cm. The electrolyte allows reversible deposition/dissolution of magnesium, features good cycling stability, and has a wide electrochemical window (>3.0V vs. Mg/Mg2+).
摘要:
Disclosed in the invention are a silicon-carbon composite anode material for lithium ion batteries and a preparation method thereof The material consists of a porous silicon substrate and a carbon coating layer. The preparation method of the material comprises preparing a porous silicon substrate and a carbon coating layer. The silicon-carbon composite anode material for lithium ion batteries has the advantages of high reversible capacity, good cycle performance and good rate performance. The material respectively shows reversible capacities of 1,556 mAh, 1,290 mAh, 877 mAh and 474 mAh/g at 0.2 C, 1 C, 4 C and 15 C rates; the specific capacity remains above 1,500 mAh after 40 cycles at the rate of 0.2 C and the reversible capacity retention rate is up to 90 percent.
摘要:
Disclosed in the invention are a silicon-carbon composite anode material for lithium ion batteries and a preparation method thereof The material consists of a porous silicon substrate and a carbon coating layer. The preparation method of the material comprises preparing a porous silicon substrate and a carbon coating layer. The silicon-carbon composite anode material for lithium ion batteries has the advantages of high reversible capacity, good cycle performance and good rate performance. The material respectively shows reversible capacities of 1,556 mAh, 1,290 mAh, 877 mAh and 474 mAh/g at 0.2 C, 1 C, 4 C and 15 C rates; the specific capacity remains above 1,500 mAh after 40 cycles at the rate of 0.2 C and the reversible capacity retention rate is up to 90 percent.
摘要:
The purpose of the present invention is to provide a magnesium secondary battery, which can be charged with electricity and can discharge electricity to be used as a magnesium secondary battery and is capable of improving characteristics of magnesium secondary batteries The positive electrode active material for a magnesium secondary battery is expressed by compositional formula of MgMSiO4, where M contains at least one element selected from among Co, Ni and Fe.
摘要:
The invention discloses an adjusting structure and a stand for photographic apparatus. The adjusting structure includes a first adjusting rod, a first connecting member, a second connecting member, a second adjusting rod, a first locking member and a supporting member. The first connecting member is fixedly connected with the first adjusting rod, the second connecting member is rotationally connected with the first connecting member and is provided with a first mounting hole, wherein the second connecting member can be rotated relative to the first connecting member to adjust an included angle with the first connecting member, the second adjusting rod is penetrated through the first mounting hole and movablely connected with the first adjusting rod, and can be moved relative to the first adjusting rod along a straight direction.
摘要:
Provided herein is a method to printed electronics, and more particularly related to printed electronics on flexible, porous substrates. The method includes applying a coating compound comprising poly (4-vinylpyridine) (P4VP) and SU-8 dissolved in an organic alcohol solution to one or more surface of a flexible, porous substrate, curing the porous substrate at a temperature of at least 130° C. such that the porous substrate is coated with a layer of said coating compound, printing a jet of a transition metal salt catalyst solution onto one or more printing sides of the flexible, porous substrate to deposit a transition metal salt catalyst onto the one or more printing sides, and submerging the substrate in an electroless metal deposition solution to deposit the metal on the flexible, porous substrate, wherein the deposited metal induces the formation of one or more three-dimensional metal-fiber conductive structures within the flexible, porous substrate.