摘要:
A metal-semiconductor junction comprises a wiring metal layer and a semiconductor layer. To reduce the contact resistance of the junction, a region doped with an n- or p-type impurity and having a high carrier concentration of 1021 cm−3 or more is provided in a near-surface part of the semiconductor layer (at a distance of 10 nm or less from the metal layer. The high-carrier concentration region is composed of n- or p-type impurity layers and IV-group semiconductor layers that have been alternately deposited upon another by means of, for example, vapor-phase growth.
摘要:
A metal-semiconductor junction comprising a wiring metal layer and a semiconductor layer. To reduce the contact resistance of the junction, a region doped with an n- or p-type impurity and having a high carrier concentration of 1021 cm−3 or more is provided in a near-surface part of the semiconductor layer (at a distance of 10 nm or less from the metal layer. The high-carrier concentration region is composed of n- or p-type impurity layers and IV-group semiconductor layers that have been alternately deposited upon another by means of, for example, vapor-phase growth.
摘要:
A method of manufacturing a semiconductor device is provided. The method includes forming a gate electrode on a semiconductor substrate; forming a dopant implantation area in the semiconductor substrate by implanting a dopant in the semiconductor substrate, using the gate electrode as a mask; forming sidewalls on the gate electrode; forming a first recess by etching the semiconductor substrate, using the gate electrode and the sidewalls as a mask; forming a second recess by removing the dopant implantation area positioned below the sidewalls; and forming a source area and a drain area by causing a semiconductor material to grow in the first recess and the second recess.
摘要:
A first p-type SiGe mixed crystal layer is formed by an epitaxial growth method in a trench, and a second p-type SiGe mixed crystal layer is formed. On the second SiGe mixed crystal layer, a third p-type SiGe mixed crystal layer is formed. The height of an uppermost surface of the first SiGe mixed crystal layer from the bottom of the trench is lower than the depth of the trench with the surface of the silicon substrate being the standard. The height of an uppermost surface of the second SiGe mixed crystal layer from the bottom of the trench is higher than the depth of the trench with the surface of the silicon substrate being the standard. Ge concentrations in the first and third SiGe mixed crystal layers are lower than a Ge concentration in the second SiGe mixed crystal layer.
摘要:
A semiconductor device has: a semiconductor substrate made of a first semiconductor material; an n-channel field effect transistor formed in the semiconductor substrate and having n-type source/drain regions made of a second semiconductor material different from the first semiconductor material; and a p-channel field effect transistor formed in the semiconductor substrate and having p-type source/drain regions made of a third semiconductor material different from the first semiconductor material, wherein the second and third semiconductor materials are different materials. The semiconductor device having n- and p-channel transistors has improved performance by utilizing stress.
摘要:
A semiconductor device has: a semiconductor substrate made of a first semiconductor material; an n-channel field effect transistor formed in the semiconductor substrate and having n-type source/drain regions made of a second semiconductor material different from the first semiconductor material; and a p-channel field effect transistor formed in the semiconductor substrate and having p-type source/drain regions made of a third semiconductor material different from the first semiconductor material, wherein the second and third semiconductor materials are different materials. The semiconductor device having n- and p-channel transistors has improved performance by utilizing stress.
摘要:
A first p-type SiGe mixed crystal layer is formed by an epitaxial growth method in a trench, and a second p-type SiGe mixed crystal layer is formed. On the second SiGe mixed crystal layer, a third p-type SiGe mixed crystal layer is formed. The height of an uppermost surface of the first SiGe mixed crystal layer from the bottom of the trench is lower than the depth of the trench with the surface of the silicon substrate being the standard. The height of an uppermost surface of the second SiGe mixed crystal layer from the bottom of the trench is higher than the depth of the trench with the surface of the silicon substrate being the standard. Ge concentrations in the first and third SiGe mixed crystal layers are lower than a Ge concentration in the second SiGe mixed crystal layer.
摘要:
Recesses are formed in a pMOS region 2, and a SiGe layer is then formed so as to cover a bottom surface and a side surface of each of the recesses. Next, a SiGe layer containing Ge at a lower content than that in the SiGe layer is formed on each of the SiGe layers.
摘要:
A p-channel MOS transistor includes a gate electrode formed on a silicon substrate in correspondence to a channel region therein via a gate insulation film, the gate electrode carrying sidewall insulation films on respective sidewall surfaces thereof, and source and drain regions of p-type are formed in the substrate at respective outer sides of the sidewall insulation films, wherein each of the source and drain regions encloses a polycrystal region of p-type accumulating therein a compressive stress.
摘要:
A semiconductor device has: a semiconductor substrate made of a first semiconductor material; an n-channel field effect transistor formed in the semiconductor substrate and having n-type source/drain regions made of a second semiconductor material different from the first semiconductor material; and a p-channel field effect transistor formed in the semiconductor substrate and having p-type source/drain regions made of a third semiconductor material different from the first semiconductor material, wherein the second and third semiconductor materials are different materials. The semiconductor device having n- and p-channel transistors has improved performance by utilizing stress.