Abstract:
A power conversion apparatus includes a power converter circuit that outputs an AC power to an electric motor, and circuitry that controls the power converter circuit to add a first change, accompanying a change of a power generated by the electric motor, to a first phase angle, which is a phase angle of a magnetic flux direction of the electric motor corresponding to the AC power, extracts a component generated by the first change from first information indicating the electric power supplied to the electric motor, and estimates the power generated by the electric motor based on the component.
Abstract:
A motor control apparatus according to an embodiment includes a power conversion unit and a control unit. The power conversion unit supplies power to a motor having salient pole characteristic. The control unit performs proportional-integral control on the deviation between a current reference and a current flowing into the motor to generate a voltage reference, and controls the power conversion unit on the basis of the voltage reference. The control unit estimates the magnetic-pole position of a rotor of the motor on the basis of a high-frequency current flowing into the motor by controlling the power conversion unit, and corrects the estimated magnetic-pole position on the basis of an integrated value of the proportional-integral control.
Abstract:
A power conversion apparatus includes circuitry to: generate a first command to provide a first electrical output to a motor; receive a first electrical response to the first electrical output; estimate a position of a magnetic pole of the motor based on the first electrical response; set a pulse provide condition in accordance with the estimated position of the magnetic pole; generate a second command to provide a positive electrical pulse output and a negative electrical pulse output to the motor in accordance with the pulse provide condition; receive a positive electrical response to the positive electrical pulse output and a negative electrical response to the negative electrical pulse output; calculate a magnitude difference between the positive electrical response and the negative electrical response; change the pulse provide condition to generate a modified second command when the magnitude difference is smaller than a predetermined difference level; and estimate a polarity of the magnetic pole based on the magnitude difference corresponding to the modified second command when the magnitude difference is larger than the predetermined difference level.
Abstract:
A motor control apparatus includes a voltage regulator to execute a voltage increase mode to increase a voltage applied to an induction motor from a lower limit of a first range over time. A frequency regulator executes a frequency decrease mode to decrease a frequency of the voltage from an upper limit of a second range over time. When a current through the motor exceeds a first threshold in the voltage increase mode, a mode changer changes the mode to the frequency decrease mode. When the current through the motor becomes smaller than a second threshold in the frequency decrease mode, the mode changer changes the mode to the voltage increase mode to control the motor to change from a free running state to a state in which the voltage and the frequency satisfy a relationship. A determinator determines whether the voltage and the frequency satisfy the relationship.
Abstract:
The power conversion device may include: power conversion circuitry configured to perform a power conversion for outputting a driving power to an induction motor; and control circuitry. The control circuitry may be configured to: receive a master command phase from a master power conversion device; generate a voltage command having a command phase in a rotating coordinate system based on a torque target value, wherein a rotating magnetic field for driving a rotor of the induction motor is generated to rotate with the rotating coordinate system; calculate a rotation phase of the rotating coordinate system based on a command phase difference between the master command phase and the command phase to reduce the command phase difference; and control the power conversion circuitry to output the driving power to the induction motor, in synchronization with the master power conversion device, based on the rotation phase and the voltage command.
Abstract:
A motor control apparatus includes a voltage regulator to execute a voltage increase mode to increase a voltage applied to an induction motor from a lower limit of a first range over time. A frequency regulator executes a frequency decrease mode to decrease a frequency of the voltage from an upper limit of a second range over time. The frequency regulator limits decrease of the frequency when a bus voltage of a bus exceeds a first threshold in the frequency decrease mode. The bus supplies DC power to an inverter to drive the motor. A mode changer alternatively changes the voltage increase mode and the frequency decrease mode to control the motor to change from a free running state to a state in which the voltage and the frequency satisfy a relationship. The determinator determines whether the voltage and the frequency satisfy the relationship.
Abstract:
A controller of an AC motor includes a d-axis voltage command section to generate a d-axis voltage command on a d axis of a d-q coordinate system. A d-axis non-interactive control section removes, from the d-axis voltage command, an interference component resulting from a current on a q axis of the system. A first current deviation arithmetic section obtains a deviation between a current command on the q axis and the current on the q axis flowing through the AC motor. A q-axis integral control section outputs an integral value of the deviation. A q-axis voltage command section generates a q-axis voltage command based on the deviation. A constant output control section outputs a correction voltage command based on the integral value. A d-axis voltage command correction section subtracts the correction voltage command from the d-axis voltage command after non-interactive control to correct the d-axis voltage command.
Abstract:
A power conversion device include: a power conversion circuitry configured to generate a driving voltage for an electric motor; and control circuitry configured to: control the power conversion circuitry to generate the driving voltage corresponding to a voltage command; acquire information indicating an output current that has flown to the electric motor according to the driving voltage; calculate a phase error based on the voltage command, the output current, and an inductance of the electric motor; calculate an updated voltage command based on a frequency command, the output current, and the inductance, wherein the updated voltage command has a command phase; calculate a phase error based on the voltage command, the output current, and the inductance; correct the command phase based on the phase error; and control the power conversion circuitry to generate the driving voltage corresponding to the updated voltage command having the corrected command phase.
Abstract:
A power conversion apparatus includes: a power converter that includes a plurality of switching elements; and a controller that controls the plurality of switching elements. The controller includes: a command generator that generates a voltage command vector; a synthesizer that synthesizes a correction vector with the voltage command vector to generate a synthetic vector; an adjuster that adjusts an output time of a plurality of voltage vectors from the power converter, the output time being corresponding to the synthetic vector; and a correction vector generator that generates the correction vector on the basis of an adjustment result of the adjuster.
Abstract:
A power conversion apparatus includes: a power converter that includes a plurality of switching elements; a switch controller that controls the plurality of switching elements so that the order of outputting a plurality of kinds of voltage vectors from the power converter is opposite in a first half and a latter half of a carrier period; a DC-side current detector that detects a DC-side current of the power converter; and a phase current detector that detects one phase current among three phase currents on the basis of the detected DC-side current at a detection timing, the detection timing being selected from a first-half timing and a latter-half timing of the carrier period at which the same kind of voltage vector is output. The phase current detector includes a timing switcher that alternately switches the detection timing between the first-half timing and the latter-half timing.