Biocompatible smart responsive scaffold having interconnected pores

    公开(公告)号:US10568986B2

    公开(公告)日:2020-02-25

    申请号:US15106468

    申请日:2014-12-19

    Abstract: A polymeric scaffold contains pendant liquid crystal side chains and has fully interconnected pores. Such a polymeric scaffold will preferably be 3D in nature and elastomeric, biocompatible and biodegradable. Such 3D liquid crystal elastomer (LCE) scaffolds can be used for various biomedical applications, including cell culture applications. A method for the production of such a polymeric scaffold containing liquid crystals and having interconnected pores is also disclosed that uses a metal foam sacrificial template as a scaffold to produce the polymeric smart response scaffold of the present invention. Consistent and controlled pore sizes result from etching the sacrificial metal foam template away from the polymeric scaffold, permitting the incorporation of growth factors, when needed, for enhancing cell viability and proliferation.

    Biodegradable side chain liquid crystal elastomers: smart responsive scaffolds (SRS) for tissue regeneration

    公开(公告)号:US10563012B2

    公开(公告)日:2020-02-18

    申请号:US15805510

    申请日:2017-11-07

    Abstract: Controlled biodegradable smart responsive scaffold (SRS) materials enhance attachment and viability of cells, i.e. actively guiding their expansion, proliferation and in some cases differentiation, while increasing their biomechanical functionality is an important key issue for tissue regeneration. Chemically build-in functionality in these biodegradable SRS materials is achieved by varying structural functionalization with biocompatible liquid crystal motifs and general polymer composition allowing for regulation and alteration of tensile strength, surface ordering, bioadhesion and biodegradability, bulk liquid crystal phase behavior, porosity, and cell response to external stimuli. Liquid crystal modification of such polymeric scaffolds is an ideal tool to induce macroscopic ordering events through external stimuli. None of these approaches have been demonstrated in prior art, and the use of biocompatible scaffolds that respond to a variety of external stimuli resulting in a macroscopic ordering event is a novel aspect of the present invention.

Patent Agency Ranking