Abstract:
Provided are a composition for producing a porous film the composition enabling a decrease in a pore diameter of a produced porous film and improvement of a flow rate through the porous film, a method for producing a porous film, and a porous film. A composition for producing a porous film, the composition comprising at least one resin component (A) selected from a group consisting of polyamide acid, polyimide, a polyamide-imide precursor, polyamide-imide, and polyethersulfone, fine particles (B), and a solvent (S), the fine particles (B) comprising fine particles (B1) and fine particles (B2) having an average particle diameter larger than that of the fine particles (B1), the fine particles (B1) having an average particle diameter of smaller than 100 nm.
Abstract:
Provided herein are materials, methods of making materials, and methods of use, wherein the materials have switchable adhesive properties. Materials of the present disclosure can reversibly change coloration in conjunction with the changing adhesive state. The films, made from a porous polymer material, can be reversibly changed from a smooth state to a rough state, allowing for reversible and tunable gripping and/or adhesive properties.
Abstract:
The present invention provides a method for producing a product having a nanoporous surface in which the pore density, pore size or pore size distribution can be easily and readily controlled. The invention provides a method for producing a product having a nanoporous surface including: forming a material in which a plurality of nanoparticles is dispersed in a matrix; and selectively removing the nanoparticles from the material in which a plurality of nanoparticles is dispersed in a matrix.
Abstract:
A porous, molecularly imprinted polymer and a process for its preparation are described. The porous, molecularly imprinted polymer is characterised in that it is obtainable by providing a porous silica; attaching a molecular template to the surface of the porous silica; filling the pores of the porous silica with a polymer, removing the silica and the molecular template, thereby leaving a porous, molecularly imprinted polymer. The process is characterised by the above defined process steps. Also described are a porous polymer vesicle and its preparation with the same features as defined for the porous, molecularly imprinted polymer and its preparation, except for the lack of the molecular template and thus the lack of the molecular imprint in the porous polymer.
Abstract:
A polymeric scaffold contains pendant liquid crystal side chains and has fully interconnected pores. Such a polymeric scaffold will preferably be 3D in nature and elastomeric, biocompatible and biodegradable. Such 3D liquid crystal elastomer (LCE) scaffolds can be used for various biomedical applications, including cell culture applications. A method for the production of such a polymeric scaffold containing liquid crystals and having interconnected pores is also disclosed that uses a metal foam sacrificial template as a scaffold to produce the polymeric smart response scaffold of the present invention. Consistent and controlled pore sizes result from etching the sacrificial metal foam template away from the polymeric scaffold, permitting the incorporation of growth factors, when needed, for enhancing cell viability and proliferation.
Abstract:
The invention provides a particulate material comprising porous polymeric microparticles having a mesoporous structure. A process for making the particles is also presented. The process comprises impregnating a porous microparticulate template material with a liquid comprising one or more monomers. The one or more monomers are then polymerized in and/or on the template material to form a polymer, and the template material is then removed to produce the particulate material.
Abstract:
The invention relates to a process for the formation of pores of controlled shape, dimensions and distribution in a polymer matrix comprising a step of embedding silicon nanowires and/or nanotrees in a nonpolymerized polymer matrix or a nonpolymerized polymer matrix in suspension or in solution in at least one solvent, a step of curing the polymer matrix, and a step of removing the silicon nanowires and/or nanotrees by chemical treatment. The process of the invention can be used for the manufacture of a proton exchange membrane fuel cell active layer. The invention has applications in the field of manufacture of proton exchange membrane fuel cells, in particular.
Abstract:
A porous polyimide obtained by removing a silica phase from an organic-inorganic polymer hybrid having a molecule structure in which a polyimide phase and the silica phase are held together by covalent bond.
Abstract:
A porous polyimide obtained by removing a silica phase from an organic-inorganic polymer hybrid having a molecule structure in which a polyimide phase and the silica phase are held together by covalent bond.
Abstract:
Ordered, monodisperse macroporous polymers, their corresponding ordered, monodisperse colloids, and methods of preparing them are disclosed. The methods use an ordered, monodisperse colloidal template to define the polymer pore morphology, which in turn acts as a mold for the growth of a new ordered, monodisperse colloid. The macroporous polymer may be prepared with either spherical or ellipsoidal pores from a wide variety of polymeric systems. The new ordered, monodisperse colloid may be grown from a wide variety of materials including ceramics, semiconductors, metals and polymers. These materials are potentially useful in optical, micro-filtering and drug delivery applications.