Abstract:
Systems and methods for detecting defects on a wafer are provided. One method includes generating output for a wafer by scanning the wafer with an inspection system using first and second optical states of the inspection system. The first and second optical states are defined by different values for at least one optical parameter of the inspection system. The method also includes generating first image data for the wafer using the output generated using the first optical state and second image data for the wafer using the output generated using the second optical state. In addition, the method includes combining the first image data and the second image data corresponding to substantially the same locations on the wafer thereby creating additional image data for the wafer. The method further includes detecting defects on the wafer using the additional image data.
Abstract:
In an optical inspection tool, an illumination aperture is opened at each of a plurality of aperture positions of an illumination pupil area one at a time across the illumination pupil area. For each aperture opening position, an incident beam is directed towards the illumination pupil area so as to selectively pass a corresponding ray bundle of the illumination beam at a corresponding set of one or more incident angles towards the sample and an output beam, which is emitted from the sample in response to the corresponding ray bundle of the incident beam impinging on the sample at the corresponding set of one or more incident angles, is detected. A defect detection characteristic for each aperture position is determined based on the output beam detected for each aperture position. An optimum aperture configuration is determined based on the determined defect detection characteristic for each aperture position.
Abstract:
Systems and methods for detecting defects on a wafer are provided. One method includes generating output for a wafer by scanning the wafer with an inspection system using first and second optical states of the inspection system. The first and second optical states are defined by different values for at least one optical parameter of the inspection system. The method also includes generating first image data for the wafer using the output generated using the first optical state and second image data for the wafer using the output generated using the second optical state. In addition, the method includes combining the first image data and the second image data corresponding to substantially the same locations on the wafer thereby creating additional image data for the wafer. The method further includes detecting defects on the wafer using the additional image data.
Abstract:
In an optical inspection tool, an illumination aperture is opened at each of a plurality of aperture positions of an illumination pupil area one at a time across the illumination pupil area. For each aperture opening position, an incident beam is directed towards the illumination pupil area so as to selectively pass a corresponding ray bundle of the illumination beam at a corresponding set of one or more incident angles towards the sample and an output beam, which is emitted from the sample in response to the corresponding ray bundle of the incident beam impinging on the sample at the corresponding set of one or more incident angles, is detected. A defect detection characteristic for each aperture position is determined based on the output beam detected for each aperture position. An optimum aperture configuration is determined based on the determined defect detection characteristic for each aperture position.
Abstract:
In an optical inspection tool, an illumination aperture is opened at each of a plurality of aperture positions of an illumination pupil area one at a time across the illumination pupil area. For each aperture opening position, an incident beam is directed towards the illumination pupil area so as to selectively pass a corresponding ray bundle of the illumination beam at a corresponding set of one or more incident angles towards the sample and an output beam, which is emitted from the sample in response to the corresponding ray bundle of the incident beam impinging on the sample at the corresponding set of one or more incident angles, is detected. A defect detection characteristic for each aperture position is determined based on the output beam detected for each aperture position. An optimum aperture configuration is determined based on the determined defect detection characteristic for each aperture position.
Abstract:
Systems and methods for detecting defects on a wafer are provided. One method includes generating output for a wafer by scanning the wafer with an inspection system using first and second optical states of the inspection system. The first and second optical states are defined by different values for at least one optical parameter of the inspection system. The method also includes generating first image data for the wafer using the output generated using the first optical state and second image data for the wafer using the output generated using the second optical state. In addition, the method includes combining the first image data and the second image data corresponding to substantially the same locations on the wafer thereby creating additional image data for the wafer. The method further includes detecting defects on the wafer using the additional image data.
Abstract:
Systems and methods for detecting defects on a wafer are provided. One method includes generating output for a wafer by scanning the wafer with an inspection system using first and second optical states of the inspection system. The first and second optical states are defined by different values for at least one optical parameter of the inspection system. The method also includes generating first image data for the wafer using the output generated using the first optical state and second image data for the wafer using the output generated using the second optical state. In addition, the method includes combining the first image data and the second image data corresponding to substantially the same locations on the wafer thereby creating additional image data for the wafer. The method further includes detecting defects on the wafer using the additional image data.
Abstract:
In an optical inspection tool, an illumination aperture is opened at each of a plurality of aperture positions of an illumination pupil area one at a time across the illumination pupil area. For each aperture opening position, an incident beam is directed towards the illumination pupil area so as to selectively pass a corresponding ray bundle of the illumination beam at a corresponding set of one or more incident angles towards the sample and an output beam, which is emitted from the sample in response to the corresponding ray bundle of the incident beam impinging on the sample at the corresponding set of one or more incident angles, is detected. A defect detection characteristic for each aperture position is determined based on the output beam detected for each aperture position. An optimum aperture configuration is determined based on the determined defect detection characteristic for each aperture position.