Abstract:
Systems and methods for discovering defects on a wafer are provided. One method includes detecting defects on a wafer by applying a threshold to output generated by a detector in a first scan of the wafer and determining values for features of the detected defects. The method also includes automatically ranking the features, identifying feature cut-lines to group the defect into bins, and, for each of the bins, determining one or more parameters that if applied to the values for the features of the defects in each of the bins will result in a predetermined number of the defects in each of the bins. The method also includes applying the one or more determined parameters to the output generated by the detector in a second scan of the wafer to generate a defect population that has a predetermined defect count and is diversified in the values for the features.
Abstract:
Systems and methods for discovering defects on a wafer are provided. One method includes detecting defects on a wafer by applying a threshold to output generated by a detector in a first scan of the wafer and determining values for features of the detected defects. The method also includes automatically ranking the features, identifying feature cut-lines to group the defect into bins, and, for each of the bins, determining one or more parameters that if applied to the values for the features of the defects in each of the bins will result in a predetermined number of the defects in each of the bins. The method also includes applying the one or more determined parameters to the output generated by the detector in a second scan of the wafer to generate a defect population that has a predetermined defect count and is diversified in the values for the features.
Abstract:
Methods and systems for selecting one or more modes of an inspection subsystem or system for inspection of a specimen are provided. The systems described herein are configured to acquire output for all of the modes to be considered at a location of a known defect on the specimen by aligning output, which is generated at the location with a mode known to generate output in which patterned features on the specimen are resolved to a degree that allows the output to be aligned to design data, with the design data for the specimen to identify the location with substantially high accuracy and then without moving the field of view of the inspection subsystem or system from that location, acquiring the output for all other modes. All of the acquired output can then be used to select mode(s) for inspection of the specimen or another specimen of the same type.
Abstract:
A defect inspection system includes an inspection sub-system and a controller communicatively coupled to the detector. The inspection sub-system includes an illumination source configured to generate a beam of illumination, a set of illumination optics to direct the beam of illumination to a sample, and a detector configured to collect illumination emanating from the sample. The controller includes a memory device and one or more processors configured to execute program instructions. The controller is configured to determine one or more target patterns corresponding to one or more features on the sample, define one or more care areas on the sample based on the one or more target patterns and design data of the sample stored within the memory device of the controller, and identify one or more defects within the one or more care areas of the sample based on the illumination collected by the detector.
Abstract:
A defect inspection system includes an inspection sub-system and a controller communicatively coupled to the detector. The inspection sub-system includes an illumination source configured to generate a beam of illumination, a set of illumination optics to direct the beam of illumination to a sample, and a detector configured to collect illumination emanating from the sample. The controller includes a memory device and one or more processors configured to execute program instructions. The controller is configured to determine one or more target patterns corresponding to one or more features on the sample, define one or more care areas on the sample based on the one or more target patterns and design data of the sample stored within the memory device of the controller, and identify one or more defects within the one or more care areas of the sample based on the illumination collected by the detector.
Abstract:
Systems and methods for discovering defects on a wafer are provided. One method includes detecting defects on a wafer by applying a threshold to output generated by a detector in a first scan of the wafer and determining values for features of the detected defects. The method also includes automatically ranking the features, identifying feature cut-lines to group the defect into bins, and, for each of the bins, determining one or more parameters that if applied to the values for the features of the defects in each of the bins will result in a predetermined number of the defects in each of the bins. The method also includes applying the one or more determined parameters to the output generated by the detector in a second scan of the wafer to generate a defect population that has a predetermined defect count and is diversified in the values for the features.