摘要:
A polymer electrolyte membrane having improved chemical or mechanical durability is provided. The present disclosure relates to a polymer electrolyte membrane, and the polymer electrolyte membrane according to the present disclosure comprises a porous support and a composite layer containing a first ionomer filled in the porous support, wherein the polymer electrolyte membrane comprises a first segment having a first durability and a second segment having a second durability, and the first durability is higher than the second durability.
摘要:
The present disclosure relates to a method for manufacturing a polymer electrolyte membrane, the method comprising the steps of (a) preparing a porous support containing a plurality of pores, (b) preparing an ion conductor dispersion solution by dispersing an ion conductor in a dispersion medium, (c) contacting the dispersion medium with the porous support to wet the dispersion medium on the porous support, and (d) introducing the ion conductor to at least one surface of the porous support by applying the ion conductor dispersion solution to the porous support wetted with the dispersion medium, and a polymer electrolyte membrane manufactured thereby.
摘要:
The present invention relates to a polymer electrolyte membrane, a manufacturing method therefor, and a membrane electrode assembly comprising same, the polymer electrolyte membrane comprising: a first porous support having first pores filled with a first ion conductor; and a second porous support having at least one second pore filled with the first ion conductor and third pores filled with a second ion conductor, wherein the first and second porous supports are in contact with each other. The polymer electrolyte membrane has enhanced performance through the improvement of impregnation properties and enhanced mechanical and chemical durability through the minimization of hydrogen permeability and dimensional change. Furthermore, an interface between the ion conductor and the support in the polymer electrolyte membrane can be stably maintained for a long time.
摘要:
Provided are a polymer electrolyte membrane used in fuel cells, and a method for producing the same, the method including a step of filling a crosslinkable ion conductor in the pores of a porous nanoweb support; and a step of crosslinking the ion conductor filled in the pores of the porous nanoweb support. The method for producing a polymer electrolyte membrane uses a relatively smaller amount of an organic solvent, can ameliorate defects of the support caused by solvent evaporation, and can enhance the impregnability of the ion conductor to the support and the convenience of the process.
摘要:
Disclosed are: a polymer electrolyte membrane which can prevent ionic conductor loss even upon the occurrence of chemical degradation in the ionic conductor according to long term use and thus can be significantly improved in chemical durability; a manufacturing method therefor; and an electrochemical device comprising same. The polymer electrolyte membrane of the present disclosure comprises a polymer electrolyte material. The polymer electrolyte material comprises an ionic conductor and a crosslinker unbound to the ionic conductor. The crosslinker has at least one cross-linkable functional group which can couple with the ionic conductor that has been degraded, thereby causing crosslinking with the ionic conductor.
摘要:
The present invention relates to a polymer electrolyte membrane, and a membrane-electrode assembly and a fuel cell containing the same, and the polymer electrolyte membrane comprises a polymer comprising repeating units represented by the following chemical formulas 1-3. Chemical formulas 1-3 are as defined in the specification. The polymer electrolyte membrane has excellent resistance to radical attack and has improved acid-base interaction, thereby maximizing the function of an ion conductive group, and thus can improve the operation performance of a fuel cell in a low humidification state.
摘要:
The present disclosure relates to a polymer electrolyte membrane comprising a polymer membrane containing an ion conductor, and a plurality of composite fibers, wherein the composite fiber comprises a core portion continuously formed in the longitudinal direction of the composite fiber and a matrix portion surrounding the core portion, and the core portion contains an ion exchange functional group.
摘要:
Disclosed are: an ionomer dispersion having high dispersion stability while also containing high content of ionomer solids, thus optimizing the ionomer morphology in a polymer electrolyte membrane to allow both the ion conductivity and durability of the polymer electrolyte membrane to be improved; a method for producing the ionomer dispersion; and a polymer electrolyte membrane produced using the method.
摘要:
Disclosed are a reinforced composite membrane for fuel cells including a porous support comprising three-dimensionally irregularly and discontinuously arranged nanofibers of a polymer and a first ionic conductor, and a second ionic conductor filling pores of the porous support, wherein the first ionic conductor is present as nanofibers in the porous support or is present in the nanofibers of the polymer to form the nanofibers together with the polymer, and a membrane-electrode assembly for fuel cells including the same. As a result, impregnation uniformity and impregnation rate of the ionic conductors are improved and proton (hydrogen ion) conductivity is thus enhanced.
摘要:
Disclosed are: a reinforced composite membrane-type polymer electrolyte membrane which can prevent the loss of an ion conductor even when the ion conductor is chemically deteriorated due to long-term use, and thus has remarkably enhanced mechanical and chemical durability; a method for manufacturing same; and an electrochemical device comprising same. The polymer electrolyte membrane of the present invention comprises: a non-crosslinked ion conductor; and a porous support having a plurality of pores filled with the ion conductor, wherein the porous support comprises a polymer having at least one crosslinking functional group, and the crosslinking functional group is a functional group which, when the ion conductor is deteriorated, can cause crosslinking of the ion conductor by binding to the deteriorated ion conductor.