Abstract:
Disclosed are a reinforced composite membrane for fuel cells including a porous support comprising three-dimensionally irregularly and discontinuously arranged nanofibers of a polymer and a first ionic conductor, and a second ionic conductor filling pores of the porous support, wherein the first ionic conductor is present as nanofibers in the porous support or is present in the nanofibers of the polymer to form the nanofibers together with the polymer, and a membrane-electrode assembly for fuel cells including the same. As a result, impregnation uniformity and impregnation rate of the ionic conductors are improved and proton (hydrogen ion) conductivity is thus enhanced.
Abstract:
The present invention relates to a polymer electrolyte membrane, a manufacturing method therefor, and a membrane electrode assembly comprising same, the polymer electrolyte membrane comprising: a first porous support having first pores filled with a first ion conductor; and a second porous support having at least one second pore filled with the first ion conductor and third pores filled with a second ion conductor, wherein the first and second porous supports are in contact with each other. The polymer electrolyte membrane has enhanced performance through the improvement of impregnation properties and enhanced mechanical and chemical durability through the minimization of hydrogen permeability and dimensional change. Furthermore, an interface between the ion conductor and the support in the polymer electrolyte membrane can be stably maintained for a long time.
Abstract:
Provided are a polymer electrolyte membrane used in fuel cells, and a method for producing the same, the method including a step of filling a crosslinkable ion conductor in the pores of a porous nanoweb support; and a step of crosslinking the ion conductor filled in the pores of the porous nanoweb support. The method for producing a polymer electrolyte membrane uses a relatively smaller amount of an organic solvent, can ameliorate defects of the support caused by solvent evaporation, and can enhance the impregnability of the ion conductor to the support and the convenience of the process.
Abstract:
The present invention relates to a polymer electrolyte membrane, and a membrane-electrode assembly and a fuel cell containing the same, and the polymer electrolyte membrane comprises a polymer comprising repeating units represented by the following chemical formulas 1-3. Chemical formulas 1-3 are as defined in the specification. The polymer electrolyte membrane has excellent resistance to radical attack and has improved acid-base interaction, thereby maximizing the function of an ion conductive group, and thus can improve the operation performance of a fuel cell in a low humidification state.
Abstract:
A hollow fiber module is disclosed. The hollow fiber module in various aspects of the present invention may include: a housing, and a hollow fiber bundle mounted in the housing and having a fluid penetration distance ranged from 10 to 200 mm. The fluid penetration distance means the shortest distance from the outmost hollow fiber in a cross-section of the hollow fiber bundle to the hollow fiber existing at the center in the cross-section of the hollow fiber bundle. In accordance with various embodiments of the present invention, the hollow fiber module may maximize the fluid delivery efficiency by improving the flow uniformity of the fluid flowing the outside of the hollow fibers. In addition, the hollow fiber module may minimize the additional usage of the hollow fibers, and thus the cost and the size of the hollow fiber module may be reduced.
Abstract:
Provided are a polymer electrode membrane including a porous support including a web of nanofibers of a first hydrocarbon-based ion conductor that are arranged irregularly and discontinuously; and a second hydrocarbon-based ion conductor filling the pores of the porous support, the first hydrocarbon-based ion conductor being a product obtained by eliminating at least a portion of the protective groups (Y) in a precursor of the first hydrocarbon-based ion conductor represented by Formula (1), a method for producing the polymer electrolyte membrane, and a membrane electrode assembly including the polymer electrolyte membrane: wherein m, p, q, M, M′, X and Y respectively have the same meanings as defined in the specification.
Abstract:
The present invention relates to a hollow fiber membrane and a hollow fiber membrane module including the same, and the hollow fiber membrane is characterized in that any one selected from the group consisting of the inner diameter and the outer diameter of the hollow fiber membrane and a combination thereof is changed. The hollow fiber membrane induces turbulence of a fluid flow at the inside and outside of the hollow fiber membrane and, thus, improves flow uniformity, thereby maximizing performance of the hollow fiber membrane module including the hollow fiber membrane.