Abstract:
A display system for an excavation machine includes a calculator configured to calculate, based on vehicle state data indicating a position and a posture of a vehicle body of an excavation machine, working equipment outer shape data indicating an outer shape and a dimension of working equipment supported by the vehicle body, and working equipment state data indicating a posture of the working equipment, a reference vector extending in a widthwise direction of a bucket of the working equipment and passing through a specified portion of the bucket, and a display controller configured to cause a display device to display the bucket and a target line viewed from a direction orthogonal to the reference vector.
Abstract:
A hydraulic excavator includes a base body portion, a movable portion, a hydraulic cylinder, a position sensor, a rotary encoder, and a control unit. The rotary encoder includes a light emitting unit, a light receiving unit, and a disk unit having a plurality of transmission portions. The control unit measures the stroke length of the hydraulic cylinder by correcting deviation of the stroke length, which is measured by the position sensor, based on the pulse signal output from the rotary encoder. In this way, there can be obtained a hydraulic excavator capable of precisely measuring a stroke length of a hydraulic cylinder driving a work implement, as well as a method for measuring the stroke of the hydraulic cylinder of the hydraulic excavator.
Abstract:
A control line determinator determines whether or not a work state of a work implement is a predetermined work state. A display controller generates a display signal including a target surface of a construction object or a control line indicating a surface which is different from the target surface and which a bucket is to be prevented from entering. The display controller makes a display form of the control line or the target surface in the display signal different according to whether or not the work state is the predetermined work state.
Abstract:
A construction information display device configured to display construction information includes: a display unit configured to display at least a partial distribution map indicating a current landform and a design landform; an input unit through which a target surface is selected from the design landform; and a display processing unit configured to, when the target surface is selected through the input unit, display a range of the selected target surface while visibly displaying the partial distribution map within the selected target surface.
Abstract:
A method for driving a ripper is provided in which the movement of a ripper attached to the rear of the body of a bulldozer is controlled. The method includes a first step in which the ripper is operated while the bulldozer is moving forward or is stopped, a second step in which the bulldozer is reversed and the ripper is raised, and a third step in which the ripper is automatically raised.
Abstract:
When correcting an error caused by deviation of an attitude detection device with respect to a work machine including a swing body which swings, a working implement being attached to the swing body, the attitude detection device outputting an attitude of the work machine, the error is corrected by using a first position which is a position of a part of the work machine when the work machine is in a first attitude and a second position which is a position of the part when the work machine is in a second attitude.
Abstract:
A display system of a working machine includes: a tilt sensor that detects a pitch angle and a roll angle of a working machine; a calculation unit that calculates a tilting position on polar coordinates that indicates a magnitude and a direction of tilt of the working machine based on the detected pitch angle and roll angle; a display unit that displays various kinds of information; a display processing unit that displays, on a predetermined region on a display screen of the display unit, a monitor-displayed level that performs a polar coordinate display of the tilting position and a marked line indicating a preset magnitude of tilt; and a setting processing unit that performs a setting to change display content of the monitor-displayed level.
Abstract:
A work vehicle includes a vehicular body, a work implement, an angle sensor, and a work implement control unit. A bucket is rotatable with respect to an arm around a bucket axis in parallel to an arm axis and a tilt axis orthogonal to a bucket axis. The angle sensor is provided in the bucket and detects an angle of inclination of the bucket with respect to a horizontal plane. The work implement control unit starts control of the work implement in which an operation of the work implement is controlled at least partially automatically when an angle of inclination of the bucket detected by the angle sensor is smaller than a first threshold value, and does not start control of the work implement when an angle of inclination of the bucket detected by the angle sensor is equal to or greater than the first threshold value.
Abstract:
A type information input unit receives an input of type information for identifying an attachment. A storage unit stores in advance correspondence between the type information and a weight or weight classification of the attachment. A specification unit specifies a corresponding weight or weight classification based on the type information input to the type information input unit.
Abstract:
A construction information display device configured to display construction information includes: a display unit configured to display at least a partial distribution map indicating a current landform and a design landform; an input unit through which a target surface is selected from the design landform; and a display processing unit configured to, when the target surface is selected through the input unit, display a range of the selected target surface while visibly displaying the partial distribution map within the selected target surface.